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ABSTRACT
A locally testable code (LTC) is an error correcting code that has a

property-tester. The tester reads 𝑞 bits that are randomly chosen,

and rejects words with probability proportional to their distance

from the code. The parameter 𝑞 is called the locality of the tester.

LTCs were initially studied as important components of prob-

abilistically checkable proofs (PCP), and since then the topic has

evolved on its own. High rate LTCs could be useful in practice:

before attempting to decode a received word, one can save time by

first quickly testing if it is close to the code.

An outstanding open question has been whether there exist “𝑐3
-

LTCs”, namely LTCs with constant rate, constant distance, and
constant locality.

In this work we construct such codes based on a new two-

dimensional complex which we call a left-right Cayley complex.

This is essentially a graph which, in addition to vertices and edges,

also has squares. Our codes can be viewed as a two-dimensional ver-

sion of (the one-dimensional) expander codes, where the codewords

are functions on the squares rather than on the edges.

CCS CONCEPTS
• Mathematics of computing→ Information theory;

KEYWORDS
error correcting codes, locally testable codes, expander codes

ACM Reference Format:
Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes.

2022. Locally Testable Codes with Constant Rate, Distance, and Locality.

In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing (STOC ’22), June 20–24, 2022, Rome, Italy. ACM, New York, NY,

USA, 18 pages. https://doi.org/10.1145/3519935.3520024

1 INTRODUCTION
A locally testable code (LTC) is an error correcting code that has

a property-tester. The tester reads 𝑞 bits (randomly - but not nec-

essarily uniformly chosen) from a given word, and rejects words
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with probability proportional to their distance from the code. The

parameter 𝑞 is called the locality of the tester.

A random code has, with high probability, constant rate and

distance, but locality that is proportional to the length. This is true

even for random LDPC codes [12], and a priori the mere existence

of codes with constant locality is not obvious. The first LTCs appear

implicitly in works on program checking [13] and on probabilisti-

cally checkable proofs (PCPs) [3, 6, 8, 9, 47]. A formal definition of

an LTC appeared simultaneously in several places [5, 9, 31, 62] (see

[38] for a detailed history).

Spielman, in his PhD thesis [63], discusses the possibility of

having an error correcting code that is locally testable (he uses the

term ‘checkable code’) and explains its potential applicability: “A
checker would be able to read only a constant number of bits of a
received signal and then estimate the chance that a decoder will be
able to correct the errors, then the checker can instantly request a
retransmission of that block, before the decoder has wasted its time
trying to decode the message. Unfortunately all known codes with
local-checkers have rate approaching zero."

Goldreich and Sudan [40] initiated a systematic study of LTCs

as objects of interest in their own right. Over the years better and

better LTCs were constructed [10, 14, 18, 24, 35, 40, 45, 61], but,

nevertheless, experts went back and forth on whether “𝑐3
-LTCs”

(namely, LTCs with constant rate, constant distance, and constant
locality) are likely to exist, compare [37, Conjecture 3.4] with [38,

Section 3.3.2].

We construct the first such family of LTCs,

Theorem 1.1. For every 0 < 𝑟 < 1, there exist 𝛿, 𝜅 > 0 and 𝐷 ∈ N
and a polynomial-time construction of an infinite family of error
correcting codes {𝐶𝑛} with rate at least 𝑟 and distance at least 𝛿 , such
that for all 𝑛, 𝐶𝑛 is 𝜅-locally testable with 𝐷2 queries.

Namely, every code 𝐶𝑛 comes with a randomized local tester that
reads at most 𝐷2 bits from a given word𝑤 and then accepts or rejects,
such that

• For all𝑤 ∈ 𝐶𝑛 , P[accept] = 1.

• For all𝑤 ∉ 𝐶𝑛 , P[reject] ≥ 𝜅 · dist(𝑤,𝐶𝑛).

The parameters 𝛿, 𝜅 (and 𝐷) depend at most polynomially (and

inverse polynomially) on 1 − 𝑟 , see Remark 5.3 for more details.

Remarkably, combining the theorem with earlier work [35, 45],

we deduce as a corollary that LTCs exist for all 𝑟, 𝛿 for which bi-

nary error-correcting codes are known to exist, namely, for all 𝑟, 𝛿

approaching the Gilbert-Varshamov bound [34, 68].
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Corollary 1.2 (LTCs approaching the GV bound). For every
0 < 𝑟, 𝛿 < 1 such that 𝑟 + ℎ(𝛿) < 1, where ℎ(·) is the binary entropy
function, there exists 𝜅 ≥ poly(1−𝑟 −ℎ(𝛿)) and 𝑞 = poly( 1

1−𝑟−ℎ (𝛿) )
such that for all large enough 𝑛 ∈ N there exists an error-correcting
code 𝐶𝑛 ⊆ F𝑛

2
with rate at least 𝑟 , distance at least 𝛿 , and 𝜅-locally

testable with 𝑞 queries.

These codes are obtained from the codes in our main theorem

via two local-transformation steps. The first step, due to [45], em-

ploys an expander-based distance amplification step due to [2]

to obtain LTCs with large constant alphabet and parameters ap-

proaching the Singleton bound. In the second step, due to [35], one

uses Thommesen’s method [66] of concatenation with a random

invertible linear transformation, to get a binary code with rate and

distance approaching the Gilbert-Varshamov bound. This step is

randomized and guaranteed to work with high probability. It would

be interesting to find a deterministic construction with the same

parameters.

1.1 Expander Codes, One Dimension Up
The celebrated expander-codes of Sipser and Spielman [64] are a

family of error correcting codes constructed from a single base code

𝐶0 ⊆ F𝑑
2
and a family of 𝑑-regular expander graphs 𝐺𝑛 = (𝑉𝑛, 𝐸𝑛)

such that the code corresponding to𝐺𝑛 consists of functions on 𝐸𝑛
such that for every vertex in 𝑉𝑛 , the local view at the neighboring

edges (assuming some arbitrary fixed ordering) is itself in the base

code 𝐶0,

𝐶 =

{
𝑓 : 𝐸𝑛 → F2

��� ∀𝑣 ∈ 𝑉𝑛, 𝑓 |𝑒𝑑𝑔𝑒𝑠 (𝑣) ∈ 𝐶0

}
.

Similarly, our codes will also be defined via a fixed base-code

and an infinite family of expander graphs. Our graphs will have, in

addition to vertices and edges, also two-dimensional faces, called

squares, where each square touches four edges and four vertices.

Our codewords are functions on the squares such that for every

edge, the bits on the neighboring squares form a codeword in the

base code. It is natural to view our code as a Tanner code [65]

with bits on the squares and constraints on the edges; whereas

the expander-codes have bits on the edges and constraints on the

vertices.

Inspecting our code on the set of squares neighboring a fixed

vertex, we see an intermediate code, whose constraints come from

the edges neighboring that vertex.

We thus have three codes for the three dimensions of links: the

base code 𝐶1 at the link of an edge, the intermediate code 𝐶0 at the

link of a vertex, and the global code 𝐶 at the link of the empty face

which is the set of all squares.

Left-Right Cayley Complex. Let us describe our construction of a

graph-with-squares, namely a square complex (for a more formal

description see Definition 3.1). Let 𝐺 be a finite group with two

symmetric sets of generators 𝐴, 𝐵. We define the left-right Cayley

complex 𝑋 = 𝐶𝑎𝑦2 (𝐴,𝐺, 𝐵) as follows
• The vertices are 𝑋 (0) = 𝐺 .

• The edges are 𝑋 (1) = 𝑋𝐴 (1) ⊔ 𝑋𝐵 (1) where

𝑋𝐴 (1) = {{𝑔, 𝑎𝑔} | 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴} ,

𝑋𝐵 (1) = {{𝑔,𝑔𝑏} | 𝑔 ∈ 𝐺,𝑏 ∈ 𝐵} .

The fact that with𝐴 we multiply on the left, and with 𝐵 we multiply

on the right, gives a local commutativity which generates many

four-cycles, namely, squares. Indeed for every 𝑎,𝑔, 𝑏 the graph has a

cycle of length 4 with alternating 𝐴 and 𝐵 edges, given by the walk

𝑔,𝑔𝑏, 𝑎𝑔𝑏, 𝑎𝑔, 𝑔. We place a square for each of these four-cycles.

• The squares are a set of the following four-cycles

𝑋 (2) = {(𝑔,𝑔𝑏, 𝑎𝑔𝑏, 𝑎𝑔, 𝑔) | 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵} .

We denote by [𝑎,𝑔, 𝑏] the square containing the edges {𝑔, 𝑎𝑔}
and {𝑔,𝑔𝑏}. By changing the ‘root’ of the square we get

[𝑎,𝑔, 𝑏] = [𝑎−1, 𝑎𝑔, 𝑏] = [𝑎−1, 𝑎𝑔𝑏, 𝑏−1] = [𝑎,𝑔𝑏, 𝑏−1].

The Code. Let 𝑋 = 𝐶𝑎𝑦2 (𝐴,𝐺, 𝐵) be a fixed left-right Cayley

complex and fix a pair of base codes 𝐶𝐴 ⊆ F𝐴
2
and 𝐶𝐵 ⊆ F𝐵

2
(as-

suming |𝐴| = |𝐵 | = 𝑑 we can take both to be isomorphic to some

𝐶1 ⊆ F𝑑
2
). Our code, denoted 𝐶 = 𝐶 [𝐴,𝐺, 𝐵,𝐶𝐴,𝐶𝐵], is defined to

be

{𝑓 : 𝑋 (2) → F2 | ∀𝑎,𝑔, 𝑏, 𝑓 ( [·, 𝑔, 𝑏]) ∈ 𝐶𝐴, 𝑓 ( [𝑎,𝑔, ·]) ∈ 𝐶𝐵} .

Observe that for a codeword 𝑓 ∈ 𝐶 and a fixed vertex 𝑔 ∈ 𝐺 ,

the restriction of 𝑓 to the squares touching 𝑔 is 𝑓 ( [·, 𝑔, ·]). It is not
difficult to check that this word necessarily belongs to the tensor

code 𝐶𝐴 ⊗ 𝐶𝐵 , see Lemma 4.1. Thus, by putting the constraints

around each edge, we get an intermediate code on the squares

touching a vertex, which turns out to be a tensor code! Tensor codes

have non-trivial dependencies among the constraints defining them.

This often implies local testability of tensor codes [15, 19, 29], and

turns out important for showing that our code 𝐶 can be locally

tested by the following simple test:

Local test: Choose a random vertex 𝑔, and accept if and only if

𝑓 ( [·, 𝑔, ·]) ∈ 𝐶𝐴 ⊗ 𝐶𝐵 .
The construction of locally testable codes is completed by de-

scribing, in Section 6, an explicit family of groups and expanding

generating sets which give expanding left-right Cayley complexes;

and, in Section 5, a suitable choice of base codes 𝐶𝐴,𝐶𝐵 .

Let us now describe how the expansion of the complex facilitates

a propagation argument for proving local testability.

Propagation from local to global. Sipser and Spielman proved dis-

tance of their expander codes [64] through propagation: expansion

of the underlying graph is used to “lift” the distance of the base

code to the distance of the global code. In our codes distance is

shown similarly.

More interestingly, a similar type of argument, butmore involved,

serves for proving local testability by “lifting” the local testability

of 𝐶𝐴 ⊗ 𝐶𝐵 , via expansion, to the entire code.

Indeed, suppose we are given a word that violates a small amount

of constraints.We describe an algorithm (see Section 4.2) that makes

iterative corrections by a local “majority rule”.

The crux of the local testability proof is to show that if this

algorithm fails to converge to a valid codeword, then there must

have been a constant fraction of violated constraints to begin with.

The argument has two main components.

• The local testability of 𝐶𝐴 ⊗ 𝐶𝐵 implies, roughly, that there

are many dependencies among the constraints defining𝐶𝐴 ⊗
𝐶𝐵 , so that if one constraint is violated, many others must

also be violated.
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• Next comes expansion. Assume at a certain vertex 𝑔 we

already have a significant amount of violated constraints

associated with the local copy of 𝐶𝐴 ⊗ 𝐶𝐵 , then this must

propagate to neighboring vertices and from there, through

expansion, globally to the entire graph, in much the same

way as in the proof of distance.

We remark that our code has many dependencies among the

constraints defining it. This is to be expected, see [11], and is the

point where it most clearly differs from earlier expander codes. In

general expander codes one can often construct a word that violates

only a single constraint. This leads to a word that is far from the

code but cannot be detected by any tester, as proven in [12].

1.2 Locally Testable Codes: Historical
Background and Techniques

Let us describe in some more detail the historical background per-

taining to locally testable codes, including some works that were

already mentioned earlier.

The study of LTCs arose naturally in works on program checking

and PCPs. The Hadamard code was the first code proven to be lo-

cally testable in the work of Blum, Luby, and Rubinfeld on linearity

testing [13]. The low (logarithmic) rate of this code was quickly

improved to polynomial rate by moving from linear functions (code-

words of the Hadamard code) to low degree polynomial functions

(codewords of the Reed-Muller code). Subsequent works studied

“low degree tests” which are in fact proofs that the Reed-Muller code

is locally testable. These works were crucial for progress leading

up to the proof of the PCP theorem. More on the relation between

PCPs and LTCs, as well as the historical development, can be found

in Goldreich’s survey [38].

A systematic study of LTCs was initiated by Goldreich and Sudan

in [40], and a sequence of works constructed both LTCs and PCPs

with improved parameters [10, 16, 18, 24, 40], achieving constant

locality and distance, but rate 1/poly log𝑛. Some experts believed

that low rate is inherently needed and some attempts to prove upper

bounds on the rate have been made [11, 17, 20, 27], although these

lower bounds are in rather restrictive models.

This, perhaps, has triggered works from the other end of the

spectrum [35, 45] which focused on constructing error correcting

codes with constant rate and distance, that are locally testable with

smallest possible locality. These works achieve constant rate and

quasi-poly-logarithmic distance and locality.

In terms of techniques, many of the earlier constructions of LTCs

have two notable features. Firstly, they are based on the properties

of low degree polynomials, and secondly, they come hand in hand

with PCP constructions, so that both share the same composition-

recursion structure.

The gap amplification technique [24] of the first author is a con-

struction of both a PCP and an LTC that relies on expander graphs

and concatenation and departs from the domain of low degree

polynomials. Meir [54] gave a tensor-code-based construction of

LTCs that is neither related to low degree functions nor to PCPs

altogether. Further works [35, 45] also construct LTCs without any

PCP counterpart.

A feature shared by all previous constructions of LTCs with

mildly high rate is their recursive nature. One first constructs codes

with weaker properties and then enhances them by concatenation,

possibly with different iterations. The overall composed structure

of the code is somewhat complicated and begs for a more direct

“one-shot” construction.

A path leading towards a one-shot construction seemed to open

up with the connection to high dimensional expanders.

1.3 High Dimensional Expansion
The current paper is mainly elementary and almost self-contained

(with the exception of Section 6 which uses the existence of some

Ramanujan Cayley graphs with specific properties and can be taken

as a black box). But it came up as a result of a much longer and

intensive journey. Some interesting open problems were left aside

along the way. It is, therefore, worthwhile to give the story here.

The journey started by the first and fourth authors during a year-

long program at the IIAS (Israeli Institute of Advanced Studies)

on high dimensional expanders in 2017: the hope was to use the

Ramanujan complexes (à la [50, 51]) to construct LTCs as high-

dimensional versions of expander-codes over Ramanujan graphs

as explained above.

Although expander codes are typically not locally testable (see

[12]) the hope was that higher dimensional versions would be.

This optimistic belief was inspired by local to global behavior of

certain high dimensional complexes that was uncovered already by

Garland in his seminal work [33].

In that paper, Garland proved a conjecture of Serre, that the co-

homology of co-compact lattices in high-rank simple 𝑝-adic groups

vanishes. Equivalently, if𝑋 is a finite simplicial quotient of a Bruhat-

Tits building of dimension at least two, its cohomology vanishes.

The proof of Garland is “local-to-global”: he showed that if the

links of relevant cells have a spectral gap, then so does the global

Laplacian of 𝑋 . Namely, if 𝑋 is locally an expander, then it is also

globally so. (For a purely combinatorial treatment and generaliza-

tions - see [58]). The global spectral gap implies the vanishing of

the cohomology.

This “local to global” approach is a high-dimensional phenom-

enon that does not hold for graphs! In graphs, the local structure

does not reveal any information about the global expansion. To

illustrate this, the reader may recall the LPS-Ramanujan graphs [49]

which are (p+1)-regular expander graphs with large girth. One can

easily get (p+1)-regular graphs with large girth (and hence locally

isomorphic to the LPS ones) which are far from being expanders. In

contrast, the Garland method shows that local expansion implies

global expansion in the high dimensional case.

The local to global approach was also the key ingredient, in

[30, 42] where Gromov’s overlapping problem was solved using

the Ramanjaun complexes.

At this point there was already some interest from the theoreti-

cal computer science community. The fact that high dimensional

expansion is related to property testing in computer science was

observed for the first time by Kaufman and the fourth author [44].

The first author and Kaufman proved that high dimensional expan-

sion implies an efficient agreement-test [28], which is related to

both PCPs and LTCs. Anari et al [4] resolved a conjecture regard-

ing convergence of certain Markov chains by analyzing the global

random walk through local analysis at the links.
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Inspired by all this, the idea was to construct LTC codes by using

the local-to-global behavior of the Ramanujan complexes in an

analog to the way [64] used Ramanujan graphs for LDPC codes.

For simplicity, we will describe it from now on only in dimension

2, but one can do the same in higher dimensions.

The original idea was as follows: fix a large prime 𝑝 and take an

infinite family of Ramanujan complexes 𝑋 , quotients of the Bruhat-

Tits building of 𝐺 = 𝑆𝐿(3,Q𝑝 ). The complex 𝑋 is a 2-dimensional

complex, the link of every edge of it is in one-to-one correspondence

with the projective line P1
over F𝑝 and the link of every vertex is the

graph of lines versus points of the projective plane over F𝑝 . One can

define a base code (“the small code”) 𝐶1 on P
1
to be a "projective"

variant of the Reed-Solomon code. This code induces a "big code"𝐶

as a subspace of the F𝑝 functions on 𝑋 (2)- the 2-dimensional cells

of 𝑋 - whose local views at every edge are in the base code of the

edge. The goal was then to propagate the rate, distance, and local

testability of Reed-Solomon codes from the small code 𝐶1 to the

big code 𝐶 .

This turned out to be easier to say than to do. At some point,

we were hoping to use 𝑝-adic uniformization. Recall the work of

Mumford [57] who used the combinatorial structure of one such

Ramanujan complex to prove a result on algebraic surfaces appear-

ing as locally symmetric quotients of 𝑆𝑈 (2, 1). We were hoping

to go in the opposite direction and to use the theory of algebraic

surfaces to study our combinatorial objects. The theory of 𝑝-adic

uniformization was developed in depth by Varshavsky in his thesis

[69] (written under the supervision of the 3rd author of the current

paper). This is an opportunity to thank Yakov Varshavsky who

gave upon our request a semester-long course describing this work.

While we eventually are not using this, we were fortunate to be

exposed to an amazing chapter of deep mathematics.

Propagating local testability from the small code to the big code

when these are defined over a high dimensional expander is possible.

This was proved in [22] with the hope that it would serve our

original plan. For our codes to fit, the intermediate code, 𝐶0 - the

one that is defined on the link of a vertex through the small Reed-

Solomon codes𝐶1 on the edges - needed to be itself locally testable.

Unfortunately we failed to prove that𝐶0 is locally testable. Here the

problem is very concrete: Find 𝐶1 inside FP
1

𝑝 such that the induced

intermediate code𝐶0 on the link of a vertex is locally testable. Here,

the link of a vertex is nothing but the lines versus points graph of

the projective plane.

One can generalize this challenge to get such a code also on

higher dimensional spherical buildings. Are such spherical codes

locally testable?

We, therefore, changed direction and replaced 𝐺 = 𝑆𝐿(3,Q𝑝 ) by
a product 𝐺 = 𝑆𝐿(2,Q𝑝 ) × 𝑆𝐿(2,Q𝑞). This time the quotients ob-

tained from congruence lattices in 𝐺 give rise to square complexes.

These complexes were shown long ago to be Ramanujan cubical

complexes [41] and the dynamic of walks along them was studied

in [56]. This time the local intermediate code is a tensor code (since

the link of every vertex is the complete bipartite graph) and there

are plenty of tensor codes that are locally testable as mentioned

above. A subtle obstacle arose at this point which does not exist in

the graph codes of [64]: one needs to name the squares in such a

way that the function defined on the link of an edge {𝑢, 𝑣} will be

in or out the code independently if we look at it from the vertex

𝑢 or the vertex 𝑣 . It might be that this challenge can be overcome,

but at that point, we realized that by changing from these square

complexes to the left-right Cayley complexes as defined above, this

problem is easily fixed. Moreover, it became also easier to argue

about the rate- making the whole paper much simpler than we

expected!

As explained, our long journey left a number of unsettled issues.

We believe they are interesting in their own right (and in all dimen-

sions) even if not needed anymore for the concrete goal of locally

testable codes.

The left-right Cayley complexes seem to be objects that are worth

studying for their own sake. It is actually somewhat surprising

that in spite of over 100 years of studying Cayley graphs, these

objects, as far as we know, have never been studied before (but

see [7], about which we learned only after writing this paper).

An immediate curiosity is whether there are higher-dimensional

analogs or whether a group “has only two sides” and hence these

exist only in dimension 2. Anyway, it seems that this paper solves

one problem but opens many others.

After this work was completed and announced, we have learned

about related developments which have happened independently

in the last few months.

As part of an ongoing effort to build a good LDPC quantum

error correcting code (qECC) by homological methods (see [7,

59]), Breuckmann and Eberhardt [7], defined a “balanced prod-

uct of 𝐺-graphs”. When specialized to Cayley graphs, this gives

the Left/Right Cayley complexes defined in Definition 3.1 below.

Using these, some quantum error correcting codes are defined as

chain complexes of length 3. Cutting them to length 2 gives classical

codes. In retrospect, one can see that our codes were hidden there

(but without the LTC property).

Even more recently, Panteleev and Kalachev [60] announced

solutions for both problems: good quantum LDPC codes as well as

good classical locally testable codes (with rate up to 1/2).

2 PRELIMINARIES
2.1 Expander Graphs
A 𝑑-regular graph 𝐺 is said to be a 𝜆-one-sided expander if it has

eigenvalues 𝑑 = 𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑛 ≥ −𝑑 which satisfy 𝜆𝑖 ≤ 𝜆 · 𝑑
for all 𝑖 > 1.

The following is a standard lemma by Alon and Chung,

Lemma 2.1 ([1]). Let 𝐺 = (𝑉 , 𝐸) be a 𝑑-regular 𝜆-one-sided ex-
pander. Let 𝑇 ⊆ 𝑉 be such that the graph induced on 𝑇 , denoted
𝐺 (𝑇 ), has average degree at least 𝛿𝑑 . Then |𝑇 | ≥ (𝛿 − 𝜆) · |𝑉 |, and
the number of edges in 𝐺 (𝑇 ) is at least (𝛿 − 𝜆)𝛿 · |𝐸 |.

This lemma holds in more general situations where instead of a

𝑑-regular graph we have a weighted Markov operator as long as it

has an orthonormal basis of eigenvectors. Let D be any probability

distribution over a finite set 𝑉 , and define an inner product by

⟨·, ·⟩D : R𝑉 × R𝑉 → R, ⟨𝑓 , 𝑓 ′⟩D = E𝑥∼D [𝑓 (𝑥) 𝑓 ′(𝑥)] .

Let 1𝑇 ∈ R𝑉 be the indicator function of a set 𝑇 ⊆ 𝑉 . We have

⟨1𝑇 , 1𝑇 ⟩D = PD [𝑇 ], and moreover the probability, with respect to

D, that a random walk described by 𝑀 starts at 𝑇 and after one
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step still stays in 𝑇 is ⟨1𝑇 , 𝑀1𝑇 ⟩D . Denote by 1 ∈ R𝑉 the constant

1 function.

Lemma 2.2. Let 𝑀 : R𝑉 → R𝑉 be a symmetric Markov oper-
ator such that 𝑀1 = 1, and such that for all ℎ with ⟨ℎ, 1⟩D = 0,
⟨ℎ,𝑀ℎ⟩D ≤ 𝜆⟨ℎ,ℎ⟩D . Let 𝑓 = 1𝑇 be the indicator of a set 𝑇 ⊆ 𝑉 .
If ⟨𝑓 , 𝑀 𝑓 ⟩D ≥ 𝛿 · ⟨𝑓 , 𝑓 ⟩D then PD [𝑇 ] ≥ 𝛿 − 𝜆, and ⟨𝑓 , 𝑀 𝑓 ⟩D ≥
𝛿 (𝛿 − 𝜆).

Proof. Denote 𝑝 = PD [𝑇 ]. We can write 𝑓 = 𝑝1 + ℎ with

⟨ℎ, 1⟩D = 0. We get

𝛿 ·𝑝 ≤ ⟨𝑓 , 𝑀 𝑓 ⟩D = ⟨𝑝1+ℎ,𝑀 (𝑝1+ℎ)⟩D ≤ 𝑝2+𝜆⟨ℎ,ℎ⟩D ≤ 𝑝2+𝜆𝑝.

where the last inequality is because ⟨ℎ,ℎ⟩D ≤ ⟨𝑓 , 𝑓 ⟩D = 𝑝 . When

rearranging, this gives the lemma. □

2.2 Error Correcting Codes
A linear code 𝐶 ⊂ F𝑛

2
is an F2-linear subspace of F

𝑛
2
. The block-

length of the code is 𝑛. The rate and distance of the code are the

relative dimension of the code and relative Hamming weight of the

smallest weight non-zero codeword, respectively, namely,

Rate(𝐶) = 1

𝑛
dim(𝐶)

dist(𝐶) = 1

𝑛
min

𝑤∈𝐶−{0}
| {𝑖 ∈ [𝑛] | 𝑤𝑖 ≠ 0} |.

We recall the definition of locally testable codes from [40]. The

definition given here is that of a “strong” LTC, and implies all other

definitions of locally testable codes. See [39, Chapter 13].

Definition 2.3 (Locally Testable Code (LTC)). For 𝜅 > 0 and 𝑞 ∈ N
we say that an error correcting code 𝐶 ⊆ F𝑛

2
is 𝜅-locally testable

with 𝑞 queries if there is a distribution over a collection of 𝑞-element

subsets 𝑆 ⊂ [𝑛] such that each subset 𝑆 is associated with a set

𝑉𝑆 ⊂ F𝑆
2
of allowed local views, and such that, denoting by 𝑓 |𝑆 the

restriction of 𝑓 to the set 𝑆 , the following hold.

• If 𝑓 ∈ 𝐶 then for every 𝑆 , 𝑓 |𝑆 ∈ 𝑉𝑆 .
• For every 𝑓 ∈ F𝑛

2
,

P𝑆 [𝑓 |𝑆 ∉ 𝑉𝑆 ] ≥ 𝜅 · dist(𝑓 ,𝐶) .

The parameter 𝜅 is called the detection probability.

Definition 2.4 (Tensor Code). Let 𝑛1, 𝑛2 ∈ N and for 𝑖 = 1, 2, let

𝐶𝑖 ⊂ F[𝑛𝑖 ]
2

be two linear codes. Define their tensor code

𝐶1 ⊗ 𝐶2 =

{
𝑓 ∈ F[𝑛1 ]×[𝑛2 ]

2

��� ∀𝑖, 𝑗, 𝑓 (𝑖, ·) ∈ 𝐶2, 𝑓 (·, 𝑗) ∈ 𝐶1

}
.

It is easy to check that dim(𝐶1 ⊗ 𝐶2) = dim(𝐶1) · dim(𝐶2), and
that dist(𝐶1 ⊗ 𝐶2) = dist(𝐶1) dist(𝐶2). We view the elements of 𝐶

as 𝑛1-by-𝑛2 matrices𝑤 and write𝑤 (𝑖, ·) ∈ F𝑛2

2
for the 𝑖-th row of

𝑤 , and similarly𝑤 (·, 𝑗) ∈ F𝑛1

2
is the 𝑗-th column of𝑤 .

A natural test for whether a given matrix 𝑓 ∈ F[𝑛1 ]×[𝑛2 ]
2

is in

the tensor code 𝐶1 ⊗ 𝐶2 is as follows:

Randomly choose a row or a column, and check whether the

restriction of 𝑓 to that column (or row) is in 𝐶1 (or 𝐶2).

The quality of the test is measured by the relation between the

rejection probability and the distance of 𝑓 from the tensor code.

Formally, this is captured by the notion of robust testability.

Definition 2.5 (Robust testability of tensor codes). Let𝐶𝑖 ⊆ F[𝑛𝑖 ]
2

for 𝑖 = 1, 2. For 𝑓 ∈ F[𝑛1 ]×[𝑛2 ]
2

, let

𝛿col (𝑓 ) = dist(𝑓 ,𝐶1 ⊗ F[𝑛2 ]
2
), 𝛿row (𝑓 ) = dist(𝑓 , F[𝑛1 ]

2
⊗ 𝐶2).

and

𝛿 (𝑓 ) = (𝛿col (𝑓 ) + 𝛿row (𝑓 ))/2.
The robust testability of 𝐶1 ⊗ 𝐶2 is defined to be

𝜏 = min

𝑓 ∉𝐶1⊗𝐶2

𝛿 (𝑓 )
dist(𝑓 ,𝐶1 ⊗ 𝐶2)

,

and we say that 𝐶1 ⊗ 𝐶2 is 𝜏-robustly testable.

The robust testability of tensor codes was first studied in [15],

where it was shown that for any code 𝐶 with sufficiently high

distance, the 𝑑-dimensional tensor code𝐶⊗𝑑 is robustly testable for

all 𝑑 ≥ 3. The requirement 𝑑 ≥ 3 was puzzling because the tensor

of Reed-Solomon codes is known [61] to be robustly testable even

for 𝑑 = 2 and this was considered the prototype for locally testable

codes. Surprisingly, Paul Valiant discovered [67] that there are codes

𝐶 for which 𝐶 ⊗ 𝐶 is not robustly testable, see also [36]. Quickly

after that [29] formulated a notion of smooth codes, broadened later

to ‘weakly smooth’ in [19], and showed that the tensor product of

a smooth code and any other code is in fact robustly testable. To

define smooth codes recall the definition of LDPC codes,

Definition 2.6 (LDPC code). Let 𝑐, 𝑑, 𝑛 ∈ N. A (𝑐, 𝑑, 𝑛)-LDPC code

is given by a (𝑐, 𝑑)-regular bipartite graph ( [𝑛], [𝑚], 𝐸) (called a

factor graph) with 𝑛 left vertices and𝑚 = 𝑛𝑐/𝑑 right vertices, called

parity checks, such that all right vertices have degree 𝑑 and all left

vertices have degree 𝑐 . The code is defined to be

𝐶 =

𝑤 ∈ F[𝑛]2

������ ∀𝑗 ∈ [𝑚], ∑
𝑖:𝑖 𝑗 ∈𝐸

𝑤 (𝑖) = 0 mod 2

 .

Definition 2.7 (Smooth code). Let 𝑐, 𝑑, 𝑛 ∈ N and 𝛼, 𝛽, 𝛿 > 0.

A (𝑐, 𝑑, 𝑛)-LDPC code 𝐶 ⊂ F[𝑛]
2

is (𝛼, 𝛽, 𝛿)-smooth if for every

𝑌 ⊆ [𝑚] with |𝑌 | ≤ 𝛼 ·𝑚 there is some 𝑋 ⊆ [𝑛] with |𝑋 | ≤ 𝛽 · 𝑛
such that the code𝐶 (𝑌 ) |𝑋 has distance at least 𝛿 , where𝑌 = [𝑚] \𝑌
and 𝑋 = [𝑛] \ 𝑋 . Here the code 𝐶 (𝑌 ) |𝑋 is the code obtained by

removing the constraints in 𝑌 and then removing the coordinates

in 𝑋 .

Random low density parity check codes (LDPC) are smooth, see

Section 5.

Agreement Testability. A related testing notion focuses on the

agreement between pairs of overlapping local views. We think of

the following situation,

• For each column we are given a codeword of 𝐶1, and these

are aggregated into𝑤1 ∈ 𝐶1 ⊗ F𝑛2

2
.

• For each row we are given a codeword of 𝐶2, and these are

aggregated into𝑤2 ∈ F𝑛1

2
⊗ 𝐶2.

• We check “agreement”, namely, pick a random pair of row 𝑖

and column 𝑗 , and check whether they agree on their inter-

section, i.e. whether

𝑤1 (𝑖, 𝑗)
?

= 𝑤2 (𝑖, 𝑗).
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Agreement testability is defined to be the ratio between the

amount of pairwise disagreement to the distance from the code

𝐶1 ⊗ 𝐶2. Formally,

Definition 2.8 (agreement testability). Let 𝜅 > 0. Let 𝐶𝑖 ⊂ F[𝑛𝑖 ]
2

for 𝑖 = 1, 2. We say that𝐶1 ⊗𝐶2 is 𝜅-agreement testable if for every

𝑤1 ∈ 𝐶1 ⊗ F[𝑛2 ]
2

, 𝑤2 ∈ F[𝑛1 ]
2
⊗ 𝐶2, there exists 𝑤 ∈ 𝐶1 ⊗ 𝐶2 such

that

𝜅 · (P𝑖 [𝑤1 (𝑖, ·) ≠ 𝑤 (𝑖, ·)] + P𝑗 [𝑤2 (·, 𝑗) ≠ 𝑤 (·, 𝑗)])

≤ P𝑖∈[𝑛1 ], 𝑗 ∈[𝑛2 ] [𝑤1 (𝑖, 𝑗) ≠ 𝑤2 (𝑖, 𝑗)] .

In words, given a word𝑤1 whose columns are in𝐶1, and given a

word𝑤2 whose rows are in𝐶2, we say that𝐶1 ⊗𝐶2 is 𝜅-agreement

testable if the amount of disagreement between 𝑤1 and 𝑤2 is an

upper-bound for the fraction of columns or rows one needs to

change in order to get to the closest word𝑤 ∈ 𝐶1 ⊗ 𝐶2, times 𝜅.

It is well known (see for example [23]) that agreement testability

is equivalent to robust testability:

Lemma 2.9. Let 𝐶𝑖 ⊆ F[𝑛𝑖 ]
2

, and assume 𝛿𝑖 = dist(𝐶𝑖 ) for 𝑖 = 1, 2.

• If𝐶1 ⊗𝐶2 is 𝜏-robustly testable then it is 𝜅-agreement testable,
for 𝜅−1 = 1

2𝛿1𝜏
+ 1+1/(2𝜏)

𝛿2

.
• If𝐶1 ⊗𝐶2 is 𝜅-agreement testable, then it is 𝜏-robustly testable
for 𝜏 = 𝜅

2(𝜅+1) .

We prove this lemma in Appendix A.

3 THE LEFT-RIGHT CAYLEY COMPLEX
We describe a new construction of a Cayley graph that in addition

to vertices and edges also has two-dimensional faces, called squares.

Each square contains four edges that constitute a four-cycle.

Definition 3.1 (Left-Right Cayley Complex). Let 𝐺 be a group

with two symmetric sets of generators 𝐴, 𝐵, namely, each is closed

under taking inverses. We assume that the identity element of

𝐺 is neither in 𝐴 nor in 𝐵. Define the Left-Right Cayley Complex
𝑋 = 𝐶𝑎𝑦2 (𝐴,𝐺, 𝐵) as follows
• The vertices are 𝑋 (0) = 𝐺 .

• The edges are 𝑋 (1) = 𝑋𝐴 (1) ⊔ 𝑋𝐵 (1) where

𝑋𝐴 (1) = {{𝑔, 𝑎𝑔} | 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴} ,

𝑋𝐵 (1) = {{𝑔,𝑔𝑏} | 𝑔 ∈ 𝐺,𝑏 ∈ 𝐵} .
• The squares are 𝑋 (2) = 𝐴 ×𝐺 × 𝐵/∼ where for every 𝑎 ∈ 𝐴,
𝑏 ∈ 𝐵 and 𝑔 ∈ 𝐺 .

(𝑎,𝑔, 𝑏) ∼ (𝑎−1, 𝑎𝑔, 𝑏) ∼ (𝑎−1, 𝑎𝑔𝑏, 𝑏−1) ∼ (𝑎,𝑔𝑏, 𝑏−1),

and denote the equivalence class of (𝑎,𝑔, 𝑏) by [𝑎,𝑔, 𝑏], so

[𝑎,𝑔, 𝑏] = {(𝑎,𝑔, 𝑏), (𝑎−1, 𝑎𝑔, 𝑏), (𝑎−1, 𝑎𝑔𝑏, 𝑏−1), (𝑎,𝑔𝑏, 𝑏−1)}.

The graph (𝑋 (0), 𝑋𝐴 (1)) is none other than the Cayley graph

𝐶𝑎𝑦 (𝐺,𝐴). Similary (𝑋 (0), 𝑋𝐵 (1)) is the Cayley graph 𝐶𝑎𝑦 (𝐺, 𝐵).
The fact that with𝐴 we multiply on the left, and with 𝐵 we multiply

on the right, gives a local commutativity which generates many

four-cycles, namely, squares.

Remark 3.2. Given a group𝐺 and a set of generators 𝐴, the Cayley

graph 𝐶𝑎𝑦𝑙𝑒 𝑓 𝑡 (𝐺,𝐴) with left-multiplication edges is isomorphic

to the Cayley graph𝐶𝑎𝑦𝑟𝑖𝑔ℎ𝑡 (𝐺,𝐴) with right multiplication edges

via the map 𝑔 ↦→ 𝑔−1
. The left-multiplication edge {𝑔, 𝑎𝑔} maps to

the right multiplication edge {𝑔−1, 𝑔−1𝑎−1}. This justifies talking
about a Cayley graph without specifying left or right multiplication.

Remark 3.3. The product of two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 =

(𝑉2, 𝐸2) is a square complex 𝑋 = 𝐺1 ×𝐺2 defined as follows.

• The vertices are 𝑋 (0) = 𝑉1 ×𝑉2.

• The edges are 𝑋 (1) = 𝐸1 × 𝑉2 ⊔ 𝑉1 × 𝐸2, where an edge

({𝑢,𝑢 ′}, 𝑣) ∈ 𝐸1 × 𝑉2 connects (𝑢, 𝑣) with (𝑢 ′, 𝑣), and sim-

ilarly an edge (𝑢, {𝑣, 𝑣 ′}) ∈ 𝑉1 × 𝐸2 connects (𝑢, 𝑣) with
(𝑢, 𝑣 ′).
• The squares 𝑋 (2) are identified with 𝐸1 × 𝐸2, so that the

square corresponding to the pair of edges 𝑒1 = {𝑢,𝑢 ′} ∈ 𝐸1

and 𝑒2 = {𝑣, 𝑣 ′} ∈ 𝐸2 is the four-cycle (𝑢, 𝑣) → (𝑢, 𝑣 ′) →
(𝑢 ′, 𝑣 ′) → (𝑢 ′, 𝑣) → (𝑢, 𝑣).

The left-right Cayley complex is the quotient of the Cartesian prod-

uct of𝐺𝐴 = (𝐺,𝑋𝐴 (1)) and 𝐺𝐵 = (𝐺,𝑋𝐵 (1)) obtained by identify-

ing the vertex (𝑔,𝑔′) with (𝑔ℎ−1, ℎ𝑔′) for all ℎ ∈ 𝐺 . One can check

that the map (𝑔,𝑔′) ↦→ 𝑔𝑔′ gives a homomorphism of graphs from

𝐺𝐴 ×𝐺𝐵 to 𝐶𝑎𝑦2 (𝐴,𝐺, 𝐵).

Remark 3.4. Left-right Cayley complexes are examples of two-

dimensional cubical complexes. Cubical complexes are well-studied,

and in particular there are constructions of Ramanujan cubical

complexes [41] with bounded degree and any dimension, whose

walk dynamics was studied in [56]. The left-right Cayley complexes

have an additional matching labels feature that other complexes

are not known to have.

Definition 3.5 (Links). For each 𝑔 ∈ 𝐺 , the link of 𝑔 is 𝑋𝑔 =

{[𝑎,𝑔, 𝑏] | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}. There is a natural map (𝑎, 𝑏) ↦→ [𝑎,𝑔, 𝑏].
For every edge 𝑒 = {𝑔, 𝑎𝑔}, the link of 𝑒 is𝑋𝑒 = {[𝑎,𝑔, 𝑏] | 𝑏 ∈ 𝐵}.

Similarly, if 𝑒 = {𝑔,𝑔𝑏} we let 𝑋𝑒 = {[𝑎,𝑔, 𝑏] | 𝑎 ∈ 𝐴}.

Definition 3.6. A left-right Cayley complex satisfies the total no-

conjugacy condition if

∀𝑎 ∈ 𝐴,𝑏 ∈ 𝐵,𝑔 ∈ 𝐺, 𝑔−1𝑎𝑔 ≠ 𝑏. (TNC)

Here are a few easy properties of left-right Cayley complexes.

Claim 3.7. Assuming (TNC), each vertex has exactly |𝐴| + |𝐵 |
distinct neighbors; and each square contains exactly four distinct
vertices; and the map (𝑎, 𝑏) ↦→ [𝑎,𝑔, 𝑏] is a bijection from 𝐴 × 𝐵 to
𝑋𝑔 for each 𝑔 ∈ 𝐺 .

Proof. Let 𝑎 ≠ 𝑎′ ∈ 𝐴 and 𝑏 ≠ 𝑏 ′ ∈ 𝐵. Clearly 𝑎𝑔 ≠ 𝑎′𝑔 and

𝑔𝑏 ≠ 𝑔𝑏 ′. If 𝑎𝑔 = 𝑔𝑏 then 𝑔−1𝑎𝑔 = 𝑏 which contradicts (TNC). So

𝑔 has |𝐴| + |𝐵 | distinct neighbors. Next we show that each square

[𝑎,𝑔, 𝑏] ∈ 𝑋 (2) must have four distinct vertices. As 1 ∉ 𝐴 ∪ 𝐵,

𝑔 ≠ 𝑎𝑔 and 𝑔 ≠ 𝑔𝑏, and we already saw that 𝑎𝑔 ≠ 𝑔𝑏. Now, if

𝑔 = 𝑎𝑔𝑏 we would contradict (TNC) because it implies 𝑔−1𝑎−1𝑔 = 𝑏

making 𝑎−1 ∈ 𝐴 and 𝑏 ∈ 𝐵 conjugates.

Finally, let us see that (𝑎, 𝑏) ↦→ [𝑎,𝑔, 𝑏] is a bijection between

𝐴 × 𝐵 and 𝑋𝑔 for all 𝑔. Assume [𝑎,𝑔, 𝑏] = [𝑎′, 𝑔, 𝑏 ′] for some

(𝑎, 𝑏), (𝑎′, 𝑏 ′) ∈ 𝐴×𝐵. This implies that (𝑎′, 𝑔, 𝑏 ′) ∈ [𝑎,𝑔, 𝑏], where
[𝑎,𝑔, 𝑏] = {(𝑎,𝑔, 𝑏), (𝑎−1, 𝑎𝑔, 𝑏), (𝑎−1, 𝑎𝑔𝑏, 𝑏−1), (𝑎,𝑔𝑏, 𝑏−1)}. Since
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𝑔 ≠ 𝑎𝑔,𝑔𝑏, 𝑎𝑔𝑏, we get (𝑎,𝑔, 𝑏) = (𝑎′, 𝑔, 𝑏 ′) which means that

(𝑎, 𝑏) = (𝑎′, 𝑏 ′). □

Remark 3.8. It follows that assuming (TNC)

|𝑋 (1) | = |𝐴| + |𝐵 |
2

· |𝐺 | and |𝑋 (2) | = |𝐴| |𝐵 |
4

· |𝐺 |.

It will be useful to consider a weighted version of the 1-skeleton

of 𝑋 , where the weight is distributed evenly between the 𝐴 and the

𝐵 edges. When |𝐴| = |𝐵 | this is the usual unweighted graph.

Definition 3.9. Let D1 be the distribution over 𝑋 (1) given by

selecting with probability half a uniform edge in 𝑋𝐴 (1), and with

probability half a uniform edge in 𝑋𝐵 (1). (In case 𝐴, 𝐵 have equal

size D1 is the uniform distribution over 𝑋 (1).)
We define an inner product on functions over 𝑋 (1). Let 𝑓 , 𝑓 ′ :

𝑋 (1) → R and define

⟨𝑓 , 𝑓 ′⟩D1
= E𝑒∼D1

[𝑓 (𝑒) 𝑓 ′(𝑒)] =
1

2

E𝑒∈𝑋𝐴 (1) [𝑓 (𝑒) 𝑓 ′(𝑒)] +
1

2

E𝑒∈𝑋𝐵 (1) [𝑓 (𝑒) 𝑓 ′(𝑒)] . (1)

This will be the only inner product we consider for functions

over 𝑋 (1) so we sometimes omit the subscript and simply write

⟨𝑓 , 𝑓 ′⟩ = ⟨𝑓 , 𝑓 ′⟩D1
. As usual we let ∥ 𝑓 ∥ = ⟨𝑓 , 𝑓 ⟩.

Parallel Random Walk. In addition to the standard random walk

on the 1-skeleton of 𝑋 , we will be interested in a random walk

on the edges called the parallel walk, which takes an edge 𝑒 to a

random edge 𝑒 ′ that is “parallel” to it.

Definition 3.10 (Labels). For each 𝑠 ∈ 𝐴 ∪ 𝐵 let [𝑠] = {𝑠, 𝑠−1}. Let
�̃� = {[𝑎] | 𝑎 ∈ 𝐴} and let �̃� = {[𝑏] | 𝑏 ∈ 𝐵}. The label of an edge

{𝑔, 𝑎𝑔} is defined to be [𝑎] = {𝑎, 𝑎−1}, and this is independent of

the presentation of the edge as {𝑔, 𝑎𝑔} or {(𝑎𝑔), 𝑎−1 (𝑎𝑔)}. Similarly,

the label of an edge {𝑔,𝑔𝑏} is defined to be [𝑏] = {𝑏,𝑏−1}.
Let �̃� ∪ �̃� denote the set of labels of the edges in the complex.

For any 𝜎 ∈ �̃� ∪ �̃�, denote by 𝑋𝜎 (1) the set of edges labelled 𝜎 .

Claim 3.11. If 𝜎 = {𝑐, 𝑐−1} ∈ �̃� ∪ �̃� and 𝑐 ≠ 𝑐−1, then 𝑋𝜎 (1) has
size |𝐺 |, otherwise it has size |𝐺 |/2.

Proof. We shall prove the claim for 𝜎 = {𝑎, 𝑎−1} ∈ �̃�, the

claim for 𝜎 ∈ �̃� is proven analogously. Observe that every vertex 𝑔

participates in two edges labelled 𝜎 = {𝑎, 𝑎−1}, namely {𝑔, 𝑎𝑔} and
{𝑔, 𝑎−1𝑔}. Since every edge is counted twice, from each of its two

endpoints, we get that |𝐺 | = |𝑋𝜎 (1) |.
In case 𝑎 = 𝑎−1

each vertex participates in only a single edge la-

belled [𝑎], but still every edge has two endpoints so after accounting
for the double counting we get |𝑋𝜎 (1) | = |𝐺 |/2. □

Let us define a Markov operator𝑀
| |
𝜎 : R𝑋

𝜎 (1) → R𝑋𝜎 (1)
on the

space of functions on 𝑋𝜎 (1). Fix 𝑓 : 𝑋𝜎 (1) → R. If 𝜎 = [𝑎] ∈ �̃� we

set

𝑀
| |
[𝑎] 𝑓 ({𝑔, 𝑎𝑔}) = E𝑏 𝑓 ({𝑔𝑏, 𝑎𝑔𝑏}),

and if 𝜎 = [𝑏] ∈ �̃� we set

𝑀
| |
[𝑏 ] 𝑓 ({𝑔,𝑔𝑏}) = E𝑎 𝑓 ({𝑎𝑔, 𝑎𝑔𝑏}) .

Note that when 𝑎 ≠ 𝑎−1
, the operator 𝑀

| |
[𝑎] on 𝑋 [𝑎] (1) is isomor-

phic to the standard randomwalk on𝐶𝑎𝑦 (𝐺, 𝐵) by sending the edge

{𝑔, 𝑎𝑔} to the vertex 𝑔. Similarly if 𝑏 ≠ 𝑏−1
then𝑀

| |
[𝑏 ] is isomorphic

to the random walk on 𝐶𝑎𝑦 (𝐺,𝐴).
We define a Markov operator𝑀 | | : R𝑋 (1) → R𝑋 (1) on the space

of functions on the entire set of edges 𝑋 (1) by letting, for any

𝑓 : 𝑋 (1) → R,

𝑀 | | 𝑓 =
∑
𝜎

𝑀
| |
𝜎 (𝑓 |𝑋𝜎 (1) ) . (2)

Definition 3.12 (Parallel RandomWalk). We define a randomwalk

on the set of edges 𝑋 (1) as follows. Starting from an edge 𝑒 , choose

uniformly a square containing 𝑒 and then move to the unique edge

𝑒 ′ ≠ 𝑒 on that square with the same label as 𝑒 . (If (TNC) does not

hold the square might not contain an edge 𝑒 ′ ≠ 𝑒 with the same

label, in which case the walk will stay in place).

The Markov operator corresponding to this walk is exactly𝑀 | | ,
because starting at an edge 𝑒 = {𝑔, 𝑎𝑔}, a random square containing

𝑒 is [𝑎,𝑔, 𝑏] for a uniformly chosen 𝑏 ∈ 𝐵, and then the only other

[𝑎]-labeled edge in this square is the edge 𝑒 ′ = {𝑔𝑏, 𝑎𝑔𝑏}.

Lemma 3.13. Assume 𝐶𝑎𝑦 (𝐺,𝐴) and 𝐶𝑎𝑦 (𝐺, 𝐵) are 𝜆-expanders.
Suppose 𝑅 ⊆ 𝑋 (1) and assume 𝑓 = 1𝑅 : 𝑋 (1) → R satisfies
⟨𝑓 , 𝑀 | | 𝑓 ⟩ ≥ 𝑐 · ⟨𝑓 , 𝑓 ⟩. Then there exists some 𝜎 ∈ �̃� ∪ �̃� such that

|𝑅 ∩ 𝑋𝜎 (1) | ≥ (𝑐 − 𝜆) |𝐺 |/2.

Proof. The weight of 𝑅 is given by ⟨𝑓 , 𝑓 ⟩, and the probability to
start in 𝑅 and stay in 𝑅 after one step of the parallel random walk

is ⟨𝑓 , 𝑀 | | 𝑓 ⟩. We expand ⟨𝑓 , 𝑀 | | 𝑓 ⟩ according to (2), and get

⟨𝑓 , 𝑀 | | 𝑓 ⟩ = E𝜎E𝑒∈𝑋𝜎 (1) [𝑓 (𝑒)𝑀
| |
𝜎 𝑓 (𝑒)],

where the expectation over 𝜎 is obtained by choosing, with proba-

bility half, a random 𝑎 ∈ 𝐴 and outputting [𝑎]; and with probability

half, a random 𝑏 ∈ 𝐵 and outputting [𝑏]. Clearly then

⟨𝑓 , 𝑓 ⟩ = E𝑒∼D1
[𝑓 (𝑒)2] = E𝜎E𝑒∈𝑋𝜎 (1) [𝑓 (𝑒)2] .

Plugging these into the inequality ⟨𝑓 , 𝑀 | | 𝑓 ⟩ − 𝑐 · ⟨𝑓 , 𝑓 ⟩ ≥ 0 we

get

E𝜎E𝑒∈𝑋𝜎 (1)
[
𝑓 (𝑒)𝑀 | |𝜎 𝑓 (𝑒) − 𝑐 · 𝑓 (𝑒)2

]
≥ 0

so there must be at least one 𝜎 for which

E𝑒∈𝑋𝜎 (1) [𝑓 (𝑒)𝑀
| |
𝜎 𝑓 (𝑒)] ≥ 𝑐 · E𝑒∈𝑋𝜎 (1) [𝑓 (𝑒)2] . (3)

Fix, say, 𝜎 = [𝑎] and define ℎ𝑎 : 𝐺 → R by ℎ𝑎 (𝑔) = 𝑓 ({𝑔, 𝑎𝑔}).
(The case 𝜎 = [𝑏] is analogous and omitted). Now,

𝑐 · ⟨ℎ𝑎, ℎ𝑎⟩ = 𝑐 · E𝑔 [ℎ𝑎 (𝑔)2] = 𝑐 · E𝑔 [𝑓 ({𝑔, 𝑎𝑔})2]

= 𝑐 · E𝑒∈𝑋 [𝑎] (1) [𝑓 (𝑒)
2]

(3)

≤ E𝑒∈𝑋 [𝑎] (1) [𝑓 (𝑒)𝑀
| |
𝜎 𝑓 (𝑒)]

= E𝑔∈𝐺 [𝑓 ({𝑔, 𝑎𝑔})E𝑏∈𝐵 [𝑓 ({𝑔𝑏, 𝑎𝑔𝑏})]]
= E𝑔∈𝐺 [ℎ𝑎 (𝑔)E𝑏∈𝐵ℎ𝑎 (𝑔𝑏)] = ⟨ℎ𝑎, 𝑀𝐵ℎ𝑎⟩,

where 𝑀𝐵 is the random walk operator on 𝐶𝑎𝑦 (𝐺, 𝐵). We relied

here on the fact that choosing a uniform edge in 𝑋 [𝑎] (1) can be

done by choosing a uniform 𝑔 ∈ 𝐺 and looking at {𝑔, 𝑎𝑔}. Observe
now that ℎ𝑎 indicates the set 𝑇 = {𝑔 ∈ 𝐺 | 𝑓 ({𝑔, 𝑎𝑔}) ≠ 0}, so by

Lemma 2.2 applied on the graph𝐶𝑎𝑦 (𝐺, 𝐵) with the operator𝑀𝐵 we

deduce that |𝑇 | ≥ (𝑐 − 𝜆) |𝐺 |. Since every non-zero value for 𝑓 can

cause at most two non-zero values in ℎ𝑎 , we get that |𝑅 ∩𝑋𝜎 (1) | =
|𝑓 −1 (1) ∩ 𝑋𝜎 (1) | ≥ |ℎ−1

𝑎 (1) |/2 = |𝑇 |/2 ≥ (𝑐 − 𝜆) · |𝐺 |/2. □
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4 ERROR CORRECTING CODE ON A
LEFT-RIGHT CAYLEY COMPLEX

Let𝐺,𝐴, 𝐵 and 𝑋 = 𝐶𝑎𝑦2 (𝐺,𝐴, 𝐵) as in the previous section. Recall

that for any vertex 𝑔 ∈ 𝑋 (0) (resp. any edge 𝑒 ∈ 𝑋 (1)) we denote
by 𝑋𝑔 ⊂ 𝑋 (2) (resp. 𝑋𝑒 ⊂ 𝑋 (2)) the set of squares in 𝑋 containing

the vertex 𝑔 (resp. the edge 𝑒). Let𝐶𝐴 ⊂ F𝐴2 and let𝐶𝐵 ⊂ F𝐵2 be two

fixed linear error correcting codes with rates 𝜌𝐴 = Rate(𝐶𝐴), 𝜌𝐵 =

Rate(𝐶𝐵) and distances 𝛿𝐴 = dist(𝐶𝐴), 𝛿𝐵 = dist(𝐶𝐵), respectively.
Define the code 𝐶 = 𝐶 [𝐺,𝐴, 𝐵,𝐶𝐴,𝐶𝐵] as follows. For an edge

𝑒 = {𝑔, 𝑎𝑔} ∈ 𝑋𝐴 (1), we define a local code

𝐶𝑒 = {𝑓 : 𝑋𝑒 → F2 | 𝑓 ( [𝑎,𝑔, ·]) ∈ 𝐶𝐵} .

Similarly, for an edge 𝑒 = {𝑔,𝑔𝑏} ∈ 𝑋𝐵 (1), we define a local code

𝐶𝑒 = {𝑓 : 𝑋𝑒 → F2 | 𝑓 ( [·, 𝑔, 𝑏]) ∈ 𝐶𝐴} .

Note that this definition appears to depend on the choice of 𝑔 ∈ 𝑒
but it does not. Finally, we define a global code

𝐶 =
{
𝑓 : 𝑋 (2) → F2

�� ∀𝑒 ∈ 𝑋 (1), 𝑓 |𝑋𝑒
∈ 𝐶𝑒

}
.

For each vertex 𝑔 ∈ 𝑋 (0), define the local tensor code around
the vertex 𝑔 to be

𝐶𝑔 =
{
𝑓 : 𝑋𝑔 → F2

�� 𝑓 ( [·, 𝑔, ·]) ∈ 𝐶𝐴 ⊗ 𝐶𝐵
}
.

Lemma 4.1 (𝐶 is a lifted tensor-code).

𝐶 =

{
𝑓 : 𝑋 (2) → F2

��� ∀𝑔 ∈ 𝑋 (0), 𝑓 |𝑋𝑔
∈ 𝐶𝑔

}
.

Proof. Immediate from the fact that 𝑓 ( [·, 𝑔, ·]) ∈ 𝐶𝐴 ⊗ 𝐶𝐵 for

any 𝑔 ∈ 𝑋 (0) if and only if 𝑓 ( [𝑎,𝑔, ·]) ∈ 𝐶𝐵 and 𝑓 ( [·, 𝑔, 𝑏]) ∈ 𝐶𝐴
for any 𝑔 ∈ 𝑋 (0), 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. □

Observe that for the local code at each vertex to be a tensor code,

we must make sure that around every 𝐴 edge we have the same
code 𝐶𝐴 , and similarly for 𝐵. If we choose different base codes at

different edges we might still get a code with rate and distance, but

local testability will probably fail, because we lose the local tensor

structure. This is in contrast to the case of expander codes where

the local base code can be chosen arbitrarily and differently at each

vertex.

4.1 Properties of the Code
We now look at the rate, distance and local testability of the code

𝐶 = 𝐶 [𝐺,𝐴, 𝐵,𝐶𝐴,𝐶𝐵]. Recall 𝜌𝐴 = Rate(𝐶𝐴), 𝜌𝐵 = Rate(𝐶𝐵) and
𝛿𝐴 = dist(𝐶𝐴), 𝛿𝐵 = dist(𝐶𝐵)

Lemma 4.2 (Rate). The rate of the code 𝐶 is bounded from below
by

Rate(𝐶) ≥ 2(𝜌𝐴 + 𝜌𝐵) − 3.

Proof. For each 𝑒 ∈ 𝑋𝐴 (1), 𝑐𝑜𝑑𝑖𝑚(𝐶𝑒 ) = 𝑐𝑜𝑑𝑖𝑚(𝐶𝐵) = |𝐵 | ·
(1 − 𝜌𝐵). Similarly for each 𝑒 ∈ 𝑋𝐵 (1), 𝑐𝑜𝑑𝑖𝑚(𝐶𝑒 ) = 𝑐𝑜𝑑𝑖𝑚(𝐶𝐴) =
|𝐴| · (1 − 𝜌𝐴). The number of linearly independent constraints on

𝑓 ∈ 𝐶 is at most

|𝑋𝐴 (1) | · |𝐵 | (1−𝜌𝐵)+ |𝑋𝐵 (1) | · |𝐴| (1−𝜌𝐴) = |𝐺 | |𝐴| |𝐵 | (1−
𝜌𝐴 + 𝜌𝐵

2

)

On the other hand, the dimension of the ambient space is the num-

ber of squares |𝑋 (2) | = |𝐺 | |𝐴| |𝐵 |/4, see Remark 3.8. Subtracting

the number of constraints from the number of bits we get a lower

bound on the dimension of the code,

𝑑𝑖𝑚(𝐶) ≥ 1

4

|𝐺 | |𝐴| |𝐵 | (1−(4−2(𝜌𝐴+𝜌𝐵))) = |𝑋 (2) | (2(𝜌𝐴+𝜌𝐵)−3) .
□

In fact, we can do a little better. Recall that a vertex cover of a
graph is a set of vertices that touch all of the edges. For example, if

the graph is bipartite, then it has a vertex cover whose size is half

the size of the graph.

Lemma 4.3 (Rate - better bound). Suppose the underlying graph
of 𝑋 has a vertex cover of size 𝜈 |𝐺 |. Then the rate of the code is at
least 4𝜈𝜌𝐴𝜌𝐵 + 1 − 4𝜈 . In particular, if the graph is bipartite, then
𝜈 = 1

2
and we get that

Rate(𝐶) ≥ 2𝜌𝐴𝜌𝐵 − 1.

It is interesting to mention that in the expander codes of Tanner

[65], (whose distance and decoding were later analyzed in [64]), if

the local code 𝐶0 has rate 𝜌0 then the global rate is shown to be at

least 2𝜌0 − 1. In our code the rate of the local code is Rate(𝐶𝑔) =
Rate(𝐶𝐴 ⊗ 𝐶𝐵) = 𝜌𝐴𝜌𝐵 , and in case the graph is bipartite, we get

the same bound of 2(𝜌𝐴𝜌𝐵) − 1 on the rate of the global code.

Proof. Let 𝑉 ∗ ⊂ 𝐺 be a vertex cover, namely, a set of vertices

that touches every edge. Then 𝑓 ∈ 𝐶 if and only if for every 𝑔 ∈ 𝑉 ∗,
𝑓 |𝑋𝑔

∈ 𝐶𝑔 . The reason is that every edge 𝑒 touches some 𝑔 ∈ 𝑉 ∗
and the constraint 𝑓 |𝑋𝑒

∈ 𝐶𝑒 is implied by 𝑓 |𝑋𝑔
∈ 𝐶𝑔 .

Since 𝐶𝑔 is isomorphic to 𝐶𝐴 ⊗ 𝐶𝐵 it has |𝐴| · |𝐵 | (1 − 𝜌𝐴𝜌𝐵)
linearly independent constraints. The dimension of the code is at

least

dim(𝐶) ≥ |𝐺 | |𝐴| |𝐵 | 1
4

− |𝑉 ∗ | · |𝐴| · |𝐵 | (1 − 𝜌𝐴𝜌𝐵)

≥ 1

4

|𝐺 | |𝐴| |𝐵 |·(1−4𝜈 (1−𝜌𝐴𝜌𝐵)) =
1

4

|𝐺 | |𝐴| |𝐵 |·(4𝜈𝜌𝐴𝜌𝐵+1−4𝜈).
(4)

□

Lemma 4.4 (Distance). Suppose 𝐶𝑎𝑦 (𝐺,𝐴) and 𝐶𝑎𝑦 (𝐺, 𝐵) are
𝜆-expanders for 𝜆 < 1. Then the distance of the code 𝐶 is bounded
from below by

dist(𝐶) ≥ 𝛿𝐴𝛿𝐵 · (max(𝛿𝐴, 𝛿𝐵) − 𝜆) .

Proof. Let 0 ≠ 𝑓 ∈ 𝐶 . Let 𝑔0 ∈ 𝑋 (0) be some vertex such that

𝑤𝑔0
= 𝑓 |𝑋𝑔

0

≠ 0 (if they are all zero then 𝑓 = 0). Observe that since

0 ≠ 𝑤𝑔0
∈ 𝐶𝐴 ⊗ 𝐶𝐵 then 𝑤𝑔0

has at least 𝛿𝐴 |𝐴| non zero columns

and at least 𝛿𝐵 |𝐵 | non-zero rows. Let 𝐴1 ⊂ 𝐴 be the labels of these

columns, and fix 𝑎1 ∈ 𝐴1. We first show that

P𝑔,𝑏 [𝑓 ( [𝑎1, 𝑔, 𝑏]) ≠ 0] ≥ 𝛿𝐵 (𝛿𝐵 − 𝜆) . (5)

To prove (5) consider the graph 𝐶𝑎𝑦 (𝐺, 𝐵) whose vertices are
𝑋 (0) and the edges are 𝑋𝐵 (1), and define a function 𝑓𝑎1

: 𝑋𝐵 (1) →
F2 by 𝑓𝑎1

({𝑔,𝑔𝑏}) = 𝑓 ( [𝑎1, 𝑔, 𝑏]). Observe that 𝑓𝑎1
is well defined

because for 𝑔′ = 𝑔𝑏,

𝑓𝑎1
({𝑔,𝑔′}) = 𝑓𝑎1

({𝑔,𝑔𝑏}) = 𝑓 ( [𝑎1, 𝑔, 𝑏])
= 𝑓 ( [𝑎1, 𝑔

′, 𝑏−1]) = 𝑓𝑎1
({𝑔′, 𝑔′𝑏−1}) = 𝑓𝑎1

({𝑔′, 𝑔}).
Since 𝑓𝑎1

≠ 0, it must have large weight because it belongs to

the expander code defined on 𝐶𝑎𝑦 (𝐺, 𝐵) with local code 𝐶𝐵 . More
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elaborately, for every vertex 𝑔 that touches an edge where 𝑓𝑎1
≠ 0,

there must be at least 𝛿𝐵 |𝐵 | non-zero edges touching 𝑔. By Lemma

2.1 we get at least 𝛿𝐵 (𝛿𝐵 −𝜆) |𝑋𝐵 (1) | edges on which 𝑓𝑎1
≠ 0, which

proves (5).

For every 𝑎 ∈ 𝐴1, the weight of 𝑓𝑎 is at least 𝛿𝐵 (𝛿𝐵 − 𝜆), so if

we choose a random 𝑎 ∈ 𝐴 and then a random edge in 𝑋𝐵 (1), the
probability that 𝑎 ∈ 𝐴1 is at least 𝛿𝐴 , and conditioned on this, the

probability that 𝑓𝑎 (𝑒) ≠ 0 is at least 𝛿𝐵 (𝛿𝐵 − 𝜆), so altogether

P𝑎,𝑔,𝑏 [𝑓 ( [𝑎,𝑔, 𝑏]) ≠ 0] ≥ P𝑎 [𝑎 ∈ 𝐴1]·P𝑔,𝑏 [𝑓𝑎 ({𝑔,𝑔𝑏}) ≠ 0 | 𝑎 ∈ 𝐴1]
≥ 𝛿𝐴𝛿𝐵 (𝛿𝐵 − 𝜆) .

Symmetrically, the weight of 𝑓 is also at least 𝛿𝐵𝛿𝐴 (𝛿𝐴 − 𝜆), and
the lemma follows. □

Theorem 4.5 (Local Testability). Let 𝑋 = 𝐶𝑎𝑦2 (𝐴,𝐺, 𝐵) be a
left-right Cayley complex such that both 𝐶𝑎𝑦 (𝐺,𝐴) and 𝐶𝑎𝑦 (𝐺, 𝐵)
are 𝜆-expanders, and such that (TNC) holds. Assume 𝐶𝐴 ⊂ F𝐴

2
and

𝐶𝐵 ⊂ F𝐵
2
are error correcting codes with relative distances 𝛿𝐴, 𝛿𝐵 > 0

respectively and such that 𝐶𝐴 ⊗ 𝐶𝐵 is 𝜅0-agreement testable. If

𝑐 =
𝜅0

8 + 𝜅0

·min(𝛿𝐴, 𝛿𝐵) > 𝜆 (6)

then𝐶 = 𝐶 [𝐺,𝐴, 𝐵,𝐶𝐴,𝐶𝐵] is 𝜅-locally testable with |𝐴| · |𝐵 | queries,
where

𝜅 = min

(
1

4(1 + |𝐴| + |𝐵 |) ,
𝑐 − 𝜆

2( |𝐴| + |𝐵 |)

)
.

Namely, for every 𝑓 : 𝑋 (2) → F2,

P𝑔∈𝑋 (0) [𝑓 |𝑋𝑔
∉ 𝐶𝑔] ≥ 𝜅 · dist(𝑓 ,𝐶).

In words, given some potential codeword 𝑓 , each vertex 𝑔 is

associated with a local test that reads 𝑓 at all of the |𝐴| · |𝐵 | squares
touching 𝑔 and checks that these values form a codeword in the

base code 𝐶𝑔 � 𝐶𝐴 ⊗ 𝐶𝐵 . The theorem says that the distance of 𝑓

to the code is upper bounded by a constant multiple of the fraction

of violated local tests.

Given a base code with distance 𝛿0 and agreement testability 𝜅0,

the testability of the entire code is about Ω(𝛿0𝜅0/(|𝐴| + |𝐵 |)).
We prove the theorem in the next section, by describing an

iterative correction algorithm that finds a codeword close to 𝑓 if

the probability that the test rejects is not too large.

4.2 Local Self-Correction Algorithm
In this section we describe a local self-correction algorithm that

starts with a given string 𝑓 : 𝑋 (2) → F2 and either finds a codeword

𝑓0 ∈ 𝐶 or gives up. We denote

𝜁 (𝑓 ) = P𝑔 (𝑓 |𝑋𝑔
∉ 𝐶𝑔),

the fraction of rejecting local tests. We will show that if 𝜁 (𝑓 ) ≤ 𝜁0

for some constant 𝜁0 > 0, then the algorithm finds 𝑓0 ∈ 𝐶 such that

dist(𝑓0, 𝑓 ) ≤ 𝑂 (𝜁 (𝑓 )).
For each vertex 𝑔, let w𝑔 ∈ 𝐶𝑔 be a closest codeword to 𝑓 |𝑋𝑔

(breaking ties arbitrarily). We focus on the collection of local views

𝑊 = {w𝑔} and whether the local views of neighboring vertices

agree on the common squares.

Definition 4.6. Given a collection𝑊 =
{
w𝑔 ∈ 𝐶𝑔

�� 𝑔 ∈ 𝐺
}
, we

define the disagreement of the collection to be

Δ(𝑊 ) = P𝑒={𝑔,𝑔′ }∈𝑋 (1) [w𝑔 |𝑋𝑒
≠ w𝑔′ |𝑋𝑒

] (7)

where 𝑒 is a uniformly random edge in 𝑋 (1).

Algorithm 1: Iterative decoding algorithm.

(input: 𝑓 : 𝑋 (2) → F2)

Start: For each 𝑔 ∈ 𝑉 , let w
0

𝑔 ∈ 𝐶𝑔 be a closest (breaking ties
arbitrarily) codeword to 𝑓 |𝑋𝑔

.

w
0

𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤∈𝐶𝑔
dist(𝑤, 𝑓 |𝑋𝑔

).

Let w𝑔 ← w
0

𝑔 for all 𝑔 ∈ 𝐺 , and let𝑊 = {w𝑔}.
Loop: If there are 𝑔 ∈ 𝑉 and𝑤 ∈ 𝐶𝑔 that reduces Δ(𝑊 )

when w𝑔 ← 𝑤 , then do so and repeat.

End: If Δ(𝑊 ) > 0 output “far”, and if Δ(𝑊 ) = 0 output

𝑓0 : 𝑋 (2) → F2, 𝑓0 (𝑠) = w𝑔 (𝑠),
for arbitrary 𝑔 ∈ 𝑠 .

Observe that Δ(𝑊 ) |𝑋 (1) | is a non-negative integer, and this

value decreases by at least 1 every step of the algorithm, so the

algorithm must halt.

Proposition 4.7. If the algorithm outputs 𝑓0 then 𝑓0 ∈ 𝐶 and

dist(𝑓 ,𝐶) ≤ dist(𝑓 , 𝑓0) ≤ 4(1 + |𝐴| + |𝐵 |) · 𝜁 (𝑓 ) .

Let𝑊 0 = {w0

𝑔} be the collection of local views defined in the

initialization step of the algorithm, and let𝑊 = {w𝑔} be the final
collection, at the end of the algorithm.

Proposition 4.8. If the algorithm outputs “far” then Δ(𝑊 ) ≥
𝜖0 = 𝑐−𝜆

|𝐴 |+ |𝐵 | , where 𝑐 =
𝜅0

8+𝜅0

·min(𝛿𝐴, 𝛿𝐵) is defined in (6).

Propositions 4.7 and 4.8 implies Theorem 4.5. Given a func-

tion 𝑓 : 𝑋 (2) → F2, run the algorithm above. The output is ei-

ther a function 𝑓0, which by Proposition 4.7, satisfies dist(𝑓 ,𝐶) ≤
dist(𝑓 , 𝑓0) ≤ 4(1 + |𝐴| + |𝐵 |) · 𝜁 (𝑓 ); or the output is “far”, in which

case Δ(𝑊 ) ≥ 𝜖0 by Proposition 4.8. We observe that

Δ(𝑊 0) ≤ 2𝜁 (𝑓 ) (8)

for the followin reason. For each edge {𝑔,𝑔′} that contributes to
Δ(𝑊 0) either 𝑓 |𝑋𝑔

≠ w
0

𝑔 or 𝑓 |𝑋𝑔′ ≠ w
0

𝑔′ , otherwise

w
0

𝑔 |𝑋𝑔𝑔′ = (𝑓 |𝑋𝑔
) |𝑋𝑔𝑔′ = 𝑓 |𝑋𝑔𝑔′ = (𝑓 |𝑋𝑔′ ) |𝑋𝑔𝑔′ = w

0

𝑔′ |𝑋𝑔𝑔′ .

Therefore, the process of selecting an edge uniformly and then a

random endpoint of it will lead to a rejecting vertex with probability

at least Δ(𝑊 0)/2, proving (8).
Now 𝜁 (𝑓 ) ≥ Δ(𝑊 0)/2 ≥ Δ(𝑊 )/2 ≥ 𝜖0/2 = 𝑐−𝜆

2( |𝐴 |+ |𝐵 |) , so we

can write

dist(𝑓 ,𝐶) ≤ 1 ≤ 2( |𝐴| + |𝐵 |)
𝑐 − 𝜆 · 𝜁 (𝑓 ) .

All in all we get,

dist(𝑓 ,𝐶) ≤ max(4(1 + |𝐴| + |𝐵 |), 2( |𝐴| + |𝐵 |)
(𝑐 − 𝜆) ) · 𝜁 (𝑓 )

= 𝜅 · P𝑔 (𝑓 |𝑋𝑔
∉ 𝐶𝑔)

as needed. □
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Remark 4.9. The algorithm above is clearly also a decoding algo-

rithm in the standard sense: if we know that the given word 𝑓 is

close enough to the code, then the regular structure of the tester

(each square affects exactly four vertices) implies that it will be

rejected with probability proportional to dist(𝑓 ,𝐶). The analysis
herein shows that for small enough (constant) distance, the algo-

rithm will then find the nearest codeword.

We now turn to prove the two propositions.

Proof of Proposition 4.7. By assumption, Δ(𝑊 ) = 0. We first

observe that the value of 𝑓0 (𝑠) does not depend on the choice of

𝑔 ∈ 𝑠 because Δ(𝑊 ) = 0 implies that w𝑔 (𝑠) = w𝑔′ (𝑠) for any
𝑔,𝑔′ ∈ 𝑠 . (Suppose 𝑔1, 𝑔2 ∈ 𝑠 disagree. If they are adjacent this

means that w𝑔1
disagrees with w𝑔2

contradicting Δ(𝑊 ) = 0. If they

are non-adjacent, they have a common neighbor which cannot

agree with both of them). It follows that 𝑓0 ∈ 𝐶 , because for each 𝑔,
𝑓0 |𝑋𝑔

= w𝑔 ∈ 𝐶𝑔 .
To bound dist(𝑓 , 𝑓0), let

𝑉0 =

{
𝑔 ∈ 𝑋 (0)

��� 𝑓 |𝑋𝑔
≠ w

0

𝑔

}
, 𝑉1 =

{
𝑔 ∈ 𝑋 (0)

��� w
0

𝑔 ≠ w𝑔

}
.

So 𝑉0 is the set of vertices whose local view does not perfectly

satisfy the constraints of the code, and𝑉1 is the set of vertices 𝑔 for

which w𝑔 at the end of the algorithm differs from its initial value.

Observe that 𝑔 ∈ 𝑉0 iff 𝑓 |𝑋𝑔
∉ 𝐶𝑔 , so by definition,

|𝑉0 | = 𝜁 (𝑓 ) · |𝑋 (0) |. (9)

Any square 𝑠 that does not touch𝑉0 ∪𝑉1 must have for every 𝑔 ∈ 𝑠
𝑓0 (𝑠) = w𝑔 (𝑠) = w

0

𝑔 (𝑠) = 𝑓 (𝑠),
where the second equality is because 𝑔 ∉ 𝑉1 and the third is because

𝑔 ∉ 𝑉0.

We bound |𝑉1 | by the number of iterations of the algorithm,

which is at most |𝑉1 | ≤ Δ(𝑊 0) · |𝑋 (1) |. We recall from (8) that

Δ(𝑊 0) ≤ 2𝜁 (𝑓 ).
Thus, we have,

|𝑉1 | ≤ Δ(𝑊 0) · |𝑋 (1) | ≤ 2𝜁 (𝑓 ) · |𝐴| + |𝐵 |
2

|𝑋 (0) |. (10)

Altogether, since every vertex touches |𝐴| |𝐵 | squares, and since

|𝑋 (2) | = |𝐴| |𝐵 | |𝑋 (0) |/4, and using (9) and (10), we get

dist(𝑓 , 𝑓0) ≤
|𝐴| |𝐵 | · |𝑉0 ∪𝑉1 |
|𝑋 (2) | =

4 · |𝑉0 ∪𝑉1 |
|𝑋 (0) |

≤ 4(1 + |𝐴| + |𝐵 |)𝜁 (𝑓 ) .
□

The interesting part of the proof is to show that if Δ(𝑊 ) > 0

after the algorithm ends, then Δ(𝑊 ) > 𝜖0 = 𝑐−𝜆
|𝐴 |+ |𝐵 | . We first give

a brief outline.

Proof outline (Proposition 4.8).We look at a set 𝑅 of dispute edges,

and then describe a random walk on the entire set of edges that is

highly expanding. We show that 𝑅 has a large “staying probability”

with respect to this random walk. Namely, if we are at 𝑅 and take a

random step we will remain in 𝑅 with good probability. Standard

expansion propagation arguments imply that 𝑅 takes up a constant

fraction of the entire set of edges. To show that𝑅 has a large “staying

probability” we analyze its local structure, relying on the local

testability of 𝐶𝐴 ⊗ 𝐶𝐵 .

Proof of Proposition 4.8. Let

𝑅 =
{
𝑒 = {𝑔,𝑔′} ∈ 𝑋 (1)

��
w𝑔 |𝑋𝑒

≠ w𝑔′ |𝑋𝑒

}
be the set of “dispute” edges. The rest of the proof is aimed towards

showing Δ(𝑊 ) ≥ 𝜖0 or equivalently, since Δ(𝑊 ) = |𝑅 |/|𝑋 (1) |, that

|𝑅 | ≥ 𝑐 − 𝜆
|𝐴| + |𝐵 | · |𝑋 (1) | =

𝑐 − 𝜆
2

· |𝐺 |. (11)

First, some more notations. For an edge {𝑔, 𝑎𝑔} ∈ 𝑋𝐴 (1) let

𝐸 | | ({𝑔, 𝑎𝑔}) =
{
{𝑔𝑏, 𝑎𝑔𝑏} ∈ 𝑋𝐴 (1)

��� 𝑏 ∈ 𝐵
}

and similarly for an edge {𝑔,𝑔𝑏} ∈ 𝑋𝐵 (1),

𝐸 | | ({𝑔,𝑔𝑏}) =
{
{𝑎𝑔, 𝑎𝑔𝑏} ∈ 𝑋𝐵 (1)

��� 𝑎 ∈ 𝐴
}
.

For a vertex 𝑔, let

𝐸𝐴 (𝑔) = {{𝑔, 𝑎𝑔} | 𝑎 ∈ 𝐴} , 𝐸𝐵 (𝑔) = {{𝑔,𝑔𝑏} | 𝑏 ∈ 𝐵} .
We now make two claims on the local structure of 𝑅. The first is

due to the local distance, and the second is due to the local testability

of 𝐶𝐴 ⊗ 𝐶𝐵 .

Claim 4.10. Suppose {𝑔, 𝑎𝑔} ∈ 𝑅, then

|𝑅 ∩ 𝐸𝐵 (𝑔) | + |𝑅 ∩ 𝐸𝐵 (𝑎𝑔) | + |𝑅 ∩ 𝐸 | |{𝑔, 𝑎𝑔}| ≥ 𝛿𝐵 |𝐵 |.
Similarly, suppose {𝑔,𝑔𝑏} ∈ 𝑅, then

|𝑅 ∩ 𝐸𝐴 (𝑔) | + |𝑅 ∩ 𝐸𝐴 (𝑔𝑏) | + |𝑅 ∩ 𝐸 | |{𝑔,𝑔𝑏}| ≥ 𝛿𝐴 |𝐴|.

Proof. Let 𝑒 = {𝑔, 𝑎𝑔} ∈ 𝑅, and note that w𝑔 |𝑋𝑒
≠ w𝑎𝑔 |𝑋𝑒

.

Since w𝑔 |𝑋𝑒
,w𝑎𝑔 |𝑋𝑒

∈ 𝐶𝑒 , these are two distinct codewords of 𝐶𝑒 ,

and must disagree on at least 𝛿𝐵 |𝐵 | squares. Let [𝑎,𝑔, 𝑏] be such
a square, and look at the three edges of the square that are not 𝑒:

{𝑔,𝑔𝑏}, {𝑔𝑏, 𝑎𝑔𝑏} and {𝑎𝑔𝑏, 𝑎𝑔}. At least one of the three edges must

be in 𝑅, because w𝑔,w𝑔𝑏 ,w𝑎𝑔𝑏 ,w𝑎𝑔 cannot all agree on the value of

[𝑎,𝑔, 𝑏] without contradicting w𝑔 ( [𝑎,𝑔, 𝑏]) ≠ w𝑎𝑔 ( [𝑎,𝑔, 𝑏]). This
implies the first part of the claim, and the second part is proven

similarly. □

The above claim is a first step in showing that an edge in 𝑅

implies more edges in 𝑅. However, it does not rule out a bunch of

edges in 𝑅 clumped around a single vertex 𝑔, in a way that does

not expand any further. The next claim appeals to the agreement-

testability of 𝐶𝐴 ⊗ 𝐶𝐵 to show that if a vertex does have many 𝑅

edges touching it, then there must also be many 𝑅 edges further

away. Recall that we assume 𝐶𝐴 ⊗ 𝐶𝐵 is agreement testable, as per

Definition 2.8.

Claim 4.11. Assume 𝐶𝐴 ⊗ 𝐶𝐵 is 𝜅0-agreement testable. For every
𝑔 ∈ 𝐺 ,

P𝑎 [{𝑔, 𝑎𝑔} ∈ 𝑅] + P𝑏 [{𝑔,𝑔𝑏} ∈ 𝑅] ≤
𝜅−1

0
P𝑎∈𝐴,𝑏∈𝐵 [{𝑎𝑔, 𝑎𝑔𝑏} ∈ 𝑅 or {𝑔𝑏, 𝑎𝑔𝑏} ∈ 𝑅] . (12)

Proof. Define 𝑤0,𝑤1,𝑤2 : 𝐴 × 𝐵 → F2 as follows. First, let

𝑤0 (𝑎, 𝑏) = w𝑔 ( [𝑎,𝑔, 𝑏]). Next, let𝑤1 (𝑎, 𝑏) = w𝑎𝑔 ( [𝑎−1, 𝑎𝑔, 𝑏]). Sim-

ilarly let 𝑤2 (𝑎, 𝑏) = w𝑔𝑏 ( [𝑎,𝑔𝑏, 𝑏−1]). In words, the 𝑎th row of

𝑤1 comes from the “opinion” of w𝑎𝑔 , and the 𝑏th column of 𝑤2

comes from the “opinion” of w𝑔𝑏 . Observe that 𝑤0 ∈ 𝐶𝐴 ⊗ 𝐶𝐵 ,

𝑤1 ∈ F𝐴
2
⊗ 𝐶𝐵 , and 𝑤2 ∈ 𝐶𝐴 ⊗ F𝐵2 . Now observe that 𝑤1 (𝑎, ·) ≠
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𝑤0 (𝑎, ·) iff {𝑔, 𝑎𝑔} ∈ 𝑅, and 𝑤2 (·, 𝑏) ≠ 𝑤0 (·, 𝑏) iff {𝑔,𝑔𝑏} ∈ 𝑅. Fi-

nally,𝑤1 (𝑎, 𝑏) ≠ 𝑤2 (𝑎, 𝑏) implies that the event on the RHS of (12)

holds, namely, {𝑎𝑔, 𝑎𝑔𝑏} ∈ 𝑅 or {𝑔𝑏, 𝑎𝑔𝑏} ∈ 𝑅.
By the 𝜅0-agreement testability of 𝐶𝐴 ⊗ 𝐶𝐵 , there is a word

𝑤 ∈ 𝐶𝐴 ⊗ 𝐶𝐵 such that

P𝑎 [𝑤 (𝑎, ·) ≠ 𝑤1 (𝑎, ·)] + P𝑏 [𝑤 (·, 𝑏) ≠ 𝑤2 (·, 𝑏)]

≤ 𝜅−1

0
· P𝑎,𝑏 [𝑤1 (𝑎, 𝑏) ≠ 𝑤2 (𝑎, 𝑏)] .

Since the iterative algorithm has terminated, we know that

P𝑎 [𝑤0 (𝑎, ·) ≠ 𝑤1 (𝑎, ·)] + P𝑏 [𝑤0 (·, 𝑏) ≠ 𝑤2 (·, 𝑏)]

≤ P𝑎 [𝑤 (𝑎, ·) ≠ 𝑤1 (𝑎, ·)] + P𝑏 [𝑤 (·, 𝑏) ≠ 𝑤2 (·, 𝑏)]
otherwise the algorithm would have flipped from w𝑔 = 𝑤0 to

w𝑔 = 𝑤 . Combining the inequalities the claim follows,

P𝑎 [{𝑔, 𝑎𝑔} ∈ 𝑅] + P𝑏 [{𝑔,𝑔𝑏} ∈ 𝑅]

= P𝑎 [𝑤0 (𝑎, ·) ≠ 𝑤1 (𝑎, ·)] + P𝑏 [𝑤0 (·, 𝑏) ≠ 𝑤2 (·, 𝑏)]
≤ P𝑎 [𝑤 (𝑎, ·) ≠ 𝑤1 (𝑎, ·)] + P𝑏 [𝑤 (·, 𝑏) ≠ 𝑤2 (·, 𝑏)]

≤ 𝜅−1

0
· P𝑎,𝑏 [𝑤1 (𝑎, 𝑏) ≠ 𝑤2 (𝑎, 𝑏)]

≤ 𝜅−1

0
· P𝑎∈𝐴,𝑏∈𝐵 [{𝑎𝑔, 𝑎𝑔𝑏} ∈ 𝑅 or {𝑔𝑏, 𝑎𝑔𝑏} ∈ 𝑅] .

□

Let 𝑀0 = 1

2
𝑀𝐴 + 1

2
𝑀𝐵 , where 𝑀𝐴, 𝑀𝐵 are the operators of the

random walks on 𝐶𝑎𝑦 (𝐺,𝐴) and 𝐶𝑎𝑦 (𝐺, 𝐵) respectively. Clearly
for any 𝑓 : 𝑋 (0) → R such that E[𝑓 ] = 0, ⟨𝑓 , 𝑀0 𝑓 ⟩ = 1

2
⟨𝑓 , 𝑀𝐴 𝑓 ⟩ +

1

2
⟨𝑓 , 𝑀𝐵 𝑓 ⟩ ≤ 𝜆⟨𝑓 , 𝑓 ⟩. Recall the distribution D1 over 𝑋 (1) from

Definition 3.9 and the corresponding inner product ⟨·, ·⟩D1
. Define

D : R𝑋 (1) → R𝑋 (0) , U : R𝑋 (0) → R𝑋 (1) to be the down and

up operators, moving us from functions on edges to functions on

vertices and vice versa. Namely,

∀𝑓1 ∈ R𝑋 (1) , D𝑓1 (𝑔) = E𝑒∼D1 |𝑔 [𝑓1 (𝑒)]

=
1

2

E𝑎∈𝐴 [𝑓1 ({𝑔, 𝑎𝑔})] +
1

2

E𝑏∈𝐵 [𝑓1 ({𝑔,𝑔𝑏})]

and that for any 𝑓0 ∈ R𝑋 (0) ,

U𝑓0 ({𝑔1, 𝑔2}) = E𝑔∈{𝑔1,𝑔2 } [𝑓0 (𝑔)] =
1

2

(𝑓0 (𝑔1) + 𝑓0 (𝑔2)).

Note that these are averaging operators so they never increase

norms, e.g. ∥D𝑓 ∥ ≤ ∥ 𝑓 ∥ for all 𝑓 .

Claim 4.12. Let 𝑀 = U𝑀0D : R𝑋 (1) → R𝑋 (1) . Then 𝑀 has
second largest eigenvalue at most 𝜆.

Proof. We rely on the fact that D1 can be described by first

choosing a uniform vertex 𝑔 and then a random edge containing

𝑔 such that with probability half we choose an 𝐴 edge and with

probability half a 𝐵 edge. For any 𝑓1 : 𝑋 (1) → R and 𝑓0 : 𝑋 (0) → R
we have

⟨D𝑓1, 𝑓0⟩ = E𝑔 [E𝑒∼D1 |𝑔 [𝑓1 (𝑒)] · 𝑓0 (𝑔)]
= E𝑒∼D1

[𝑓1 (𝑒)E𝑔∈𝑒 [𝑓0 (𝑔)]] = ⟨𝑓1,U𝑓0⟩D1
.

Now, if ⟨𝑓1, 1⟩ = 0 then ⟨D𝑓1, 1⟩ = 0, so

⟨𝑓1, 𝑀 𝑓1⟩ = ⟨𝑓1,U𝑀0D𝑓1⟩ = ⟨D𝑓1, 𝑀0D𝑓1⟩

≤ 𝜆⟨D𝑓1,D𝑓1⟩ ≤ 𝜆⟨𝑓1, 𝑓1⟩.
□

The following lemma is based on Claims 4.10 and 4.11.

In the following lemmawe identify𝛾𝑀 | |+(1−𝛾)𝑀 as the random

walk that, through Claims 4.10 and 4.11, does not let the set 𝑅 to

expand too much.We also show that this randomwalk is expanding,

so the only remaining option is that 𝑅 must be large.

Lemma 4.13. Fix 𝛾 =
𝜅0

8+𝜅0

. Let 𝑀 = U𝑀0D and let 𝑓 = 1𝑅 :

𝑋 (1) → R be the indiator function of the edge set 𝑅. Then

⟨𝑓 , (𝛾𝑀 | | + (1 − 𝛾)𝑀) 𝑓 ⟩D1
≥ 𝛾 ·min(𝛿𝐴, 𝛿𝐵) · ⟨𝑓 , 𝑓 ⟩D1

.

Proof. We give a combinatorial interpretation to𝛾𝑀 | |+(1−𝛾)𝑀
by observing that for a fixed 𝑒 ∈ 𝑋 (1), (𝛾𝑀 | | + (1 − 𝛾)𝑀) 𝑓 (𝑒) is
the probability that 𝑒 ′ ∈ 𝑅 in the following random process.

(1) Start from an edge 𝑒 ∈ 𝑋 (1).
(2) With probability 𝛾 , output a uniformly random edge 𝑒 ′ ∈

𝐸 | | (𝑒) and halt. With probability 1 − 𝛾 continue.

(3) Choose at random one of the endpoints of the edge, 𝑔1 ∈ 𝑒 .
(4) With probability

1

2
let 𝑔2 = 𝑎1𝑔1 for a random 𝑎1 ∈ 𝐴, and

with probability
1

2
let 𝑔2 = 𝑔1𝑏1 for a random 𝑏1 ∈ 𝐵.

(5) With probability
1

2
let 𝑒 ′ = {𝑔2, 𝑎2𝑔2} for a random 𝑎2 ∈ 𝐴,

and with probability
1

2
let 𝑔2 = 𝑔2𝑏2 for a random 𝑏2 ∈ 𝐵.

Output 𝑒 ′.

Notice that the walk has three kinds of steps, to cover the three

cases in Claim 4.10. We will prove the lemma by showing that for

every 𝑒 ∈ 𝑅,

(𝛾𝑀 | | + (1 − 𝛾)𝑀) 𝑓 (𝑒) ≥ 𝛾 ·min(𝛿𝐴, 𝛿𝐵) . (13)

So fix some 𝑒 ∈ 𝑅, and for convenience assume 𝑒 = {𝑔, 𝑎𝑔} for some

𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴 (if 𝑒 = {𝑔,𝑔𝑏} the argument is symmetric). Let

𝑟0 = |𝑅 ∩ 𝐸 | | (𝑒) |, 𝑟1 = |𝑅 ∩ 𝐸𝐵 (𝑔) |, 𝑟2 = |𝑅 ∩ 𝐸𝐵 (𝑎𝑔) |.

By Claim 4.10, 𝑟0+𝑟1+𝑟2 ≥ 𝛿𝐵 |𝐵 |. With probability 𝛾 step 2 outputs

a random 𝑒 ′ ∈ 𝐸 | | (𝑒), and the probability it is in 𝑅 is 𝑟0/|𝐵 |.

P[𝑒 ′ ∈ 𝑅] = 𝛾 ·𝑟0/|𝐵 |+(1−𝛾) ·P[𝑒 ′ ∈ 𝑅 | the process entered step 3]
(14)

Assume we entered step 3. Due to Claim 4.11,

P𝑎,𝑏 [{𝑎𝑔1, 𝑎𝑔1𝑏} ∈ 𝑅 or {𝑔1𝑏, 𝑎𝑔1𝑏} ∈ 𝑅] ≥ 𝜅0 · 𝑟𝑖/|𝐵 | (15)

where 𝑖 ∈ {1, 2} depending on whether 𝑔1 = 𝑔 or 𝑔1 = 𝑎𝑔 as

chosen in step 3. What is the probability that 𝑒 ′ is one of the edges
{𝑎𝑔1, 𝑎𝑔1𝑏} and {𝑔1𝑏, 𝑎𝑔1𝑏} considered in the LHS of (15)? This

happens exactly if in steps 4 and 5 we will walk in alternating

colors (𝐴, 𝐵 or 𝐵,𝐴). Let E𝐴𝐵 be the event that in step 4 we choose

an 𝐴-edge, i.e. 𝑔2 = 𝑎1𝑔1 for some 𝑎1 ∈ 𝐴 and then in step 5 we set

𝑒 ′ to be a 𝐵-edge, i.e. 𝑒 ′ = {𝑎1𝑔1, 𝑎1𝑔1𝑏2} for some 𝑏2 ∈ 𝐵. Similarly

let E𝐵𝐴 be the event that 𝑔2 = 𝑔1𝑏1 and 𝑒
′ = {𝑔1𝑏1, 𝑎2𝑔1𝑏1}. Clearly

P[E𝐴𝐵] = P[E𝐵𝐴] =
1

4

.

Now,

P[E𝐴𝐵 and 𝑒 ′ ∈ 𝑅] = 1

4

· P𝑎1,𝑏2
[{𝑎1𝑔1, 𝑎1𝑔1𝑏2} ∈ 𝑅], (16)

and

P[E𝐵𝐴 and 𝑒 ′ ∈ 𝑅] = 1

4

· P𝑎2,𝑏1
[{𝑔1𝑏1, 𝑎2𝑔1𝑏1} ∈ 𝑅] . (17)
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where the probability is taken over the randomness of the random

process above conditioned on having entered step 3. Since E𝐴𝐵 and

E𝐵𝐴 are disjoint events,

P[𝑒 ′ ∈ 𝑅] ≥ P[E𝐴𝐵 and 𝑒 ′ ∈ 𝑅] + P[E𝐵𝐴 and 𝑒 ′ ∈ 𝑅]

≥ 1

4

· (P𝑎,𝑏 [{𝑎𝑔1, 𝑎𝑔1𝑏} ∈ 𝑅] + P𝑎,𝑏 [{𝑔1𝑏, 𝑎𝑔1𝑏} ∈ 𝑅])

≥ 1

4

· P𝑎,𝑏 [{𝑎𝑔1, 𝑎𝑔1𝑏} ∈ 𝑅 or {𝑔1𝑏, 𝑎𝑔1𝑏} ∈ 𝑅]

≥ 1

4

𝜅0 · 𝑟𝑖/|𝐵 | =
𝑟𝑖𝜅0

4|𝐵 |
where in the last inequality we have used (15). We conclude that

if in step 3 we choose 𝑔1 = 𝑔, then P[𝑒 ′ ∈ 𝑅] ≥ 𝑟1𝜅0

4 |𝐵 | , whereas if in

step 3 we choose 𝑔1 = 𝑎𝑔, then P[𝑒 ′ ∈ 𝑅] ≥ 𝑟2𝜅0

4 |𝐵 | .
Altogether, recalling (14),

P[𝑒 ′ ∈ 𝑅] ≥ 𝛾 · 𝑟0

|𝐵 | + (1 − 𝛾) ·
𝜅0

4|𝐵 | (𝑟1 + 𝑟2)/2.

Plugging in 𝛾 =
𝜅0

8+𝜅0

, we get 1 − 𝛾 = 8𝛾/𝜅0, and recalling that

𝑟0 + 𝑟1 + 𝑟2 ≥ 𝛿𝐵 |𝐵 |,
P[𝑒 ′ ∈ 𝑅] ≥ 𝛾 (𝑟0 + 𝑟1 + 𝑟2)/|𝐵 | ≥ 𝛾𝛿𝐵 .

We have seen that if 𝑒 = {𝑔, 𝑎𝑔} for some 𝑎,𝑔 is in 𝑅, then 𝑒 ′ ∈ 𝑅
with probability at least 𝛾𝛿𝐵 . Symmetrically, if 𝑒 = {𝑔,𝑔𝑏} for some

𝑔,𝑏 is in 𝑅 then we would get that 𝑒 ′ ∈ 𝑅 with probability at least

𝛾𝛿𝐴 . Together this proves (13) and completes the proof of Lemma

4.13. □

Recall from (6) that 𝑐 =
𝜅0

8+𝜅0

· min(𝛿𝐴, 𝛿𝐵). By Lemma 4.13,

⟨𝑓 , (𝛾𝑀 | | + (1 − 𝛾)𝑀) 𝑓 ⟩ ≥ 𝑐 · ⟨𝑓 , 𝑓 ⟩ so either

⟨𝑓 , 𝑀 𝑓 ⟩ ≥ 𝑐 ⟨𝑓 , 𝑓 ⟩ (18)

or

⟨𝑓 , 𝑀 | | 𝑓 ⟩ ≥ 𝑐 ⟨𝑓 , 𝑓 ⟩. (19)

If (18) holds, then by Lemma 2.2, applied with the operator 𝑀 ,

whose vertex set 𝑋 (1) is endowed with the distribution D1, we get

PD1
[𝑅] ≥ 𝑐 − 𝜆 which means that |𝑅 | ≥ |𝐺 |

2
·min( |𝐴|, |𝐵 |) (𝑐 − 𝜆).

Otherwise, assume that (19) holds. By Lemma 3.13 there exists

some 𝜎 ∈ �̃� ∪ �̃� such that, |𝑅 ∩ 𝑋𝜎 (1) | ≥ |𝐺 | (𝑐 − 𝜆)/2.
This completes the proof of Proposition 4.8 showing that if

Δ(𝑊 ) > 0 then Δ(𝑊 ) > 2(𝑐−𝜆)
|𝐴 |+ |𝐵 | . □

5 A CONCRETE CONSTRUCTION
In the previous section we have described a code scheme: Given

a left-right Cayley complex 𝐶𝑎𝑦2 (𝐴,𝐺, 𝐵) together with two base

codes 𝐶𝐴 ⊆ F𝐴
2
and 𝐶𝐵 ⊆ F𝐵

2
, we get an error correcting code

𝐶 [𝐺,𝐴, 𝐵,𝐶𝐴,𝐶𝐵].
In this section we prove our main theorem by showing how to

find an infinite family of left-right Cayley complexes and base codes

that yield locally testable codes.

Theorem (Restatement of Theorem 1.1). For every 0 < 𝑟 < 1,
there exist 𝛿, 𝜅 > 0, 𝐷 ∈ N and an explicit construction of an infinite
family of binary linear error correcting codes {𝐶𝑛}𝑛 , such that for
each 𝑛, Rate(𝐶𝑛) ≥ 𝑟 , dist(𝐶𝑛) ≥ 𝛿 and 𝐶𝑛 is 𝜅-locally testable with
𝐷2 queries.

The proof of the theorem relies on the following two lemmas.

Lemma 5.1 (Good base code). For all 0 < 𝑟0 < 1, there exist
𝛿0, 𝜅0 > 0 and 𝑑0 ∈ N, such that for any 𝐷 ∈ N that is divisible by 𝑑0,
there exists a binary linear error correcting code 𝐶0 of length 𝐷 , rate
at least 𝑟0, distance at least 𝛿0, and such that the tensor code 𝐶0 ⊗𝐶0

is 𝜅0-agreement testable.

Lemma 5.2 (Good left-right Cayley complexes). Let 𝑑0 ∈ N.
Let 𝑞 be any odd prime power such that 𝑞 ≥ 𝑑2

0
and define 𝐷 =

𝑑0 · ⌊𝑞+1𝑑0

⌋ ∈ N. Then there exist an explicit construction of an infinite
family of finite groups𝐺𝑖 = 𝑃𝑆𝐿2 (𝑞𝑖 ), with two symmetric generating
subsets 𝐴𝑖 , 𝐵𝑖 ⊂ 𝐺𝑖 , such that for each 𝑖 , both 𝐴𝑖 and 𝐵𝑖 are of size
𝐷 hence divisible by 𝑑0, 𝐴𝑖 and 𝐵𝑖 satisfy condition (TNC), and the
Cayley graphs Cay(𝐺𝑖 , 𝐴𝑖 ) and Cay(𝐺𝑖 , 𝐵𝑖 ) are 𝜆-expanders where
𝜆 ≤ 4𝐷−1/2.

We prove Lemma 5.1 in Subsection 5.1 by showing that random

LDPC codes are smooth. We prove Lemma 5.2 in Section 6 using the

known constructions of Ramanujan graphs by Lubotzky, Samuels

and Vishne [51] and Morgenstern [55].

Let us now deduce Theorem 1.1 from Lemmas 5.1 and 5.2.

Proof of Theorem 1.1. Fix 0 < 𝑟 < 1 and set 𝑟0 = 𝑟+3
4

so that

𝑟 = 4𝑟0 − 3. Given 𝑟0, let 𝛿0, 𝜅0 > 0 and 𝑑0 ∈ N be the constants

appearing in Lemma 5.1. Let 𝑞 be an odd prime power such that

𝑞 ≥ max{𝑑2

0
, 2600𝜅−2𝛿−2} and let 𝐷 = 𝑑0 ⌈𝑞+1𝑑0

⌉ ∈ N. Note that

𝐷 ≥ 𝑞+1−𝑑0 ≥ 𝑞+1−√𝑞 > 1

2
𝑞 > 36

2𝜅−2

0
𝛿−2

0
, hence 4𝐷−1/2 <

𝜅0𝛿0

𝜅0+8 .
By Lemma 5.1 there exists a code 𝐶0 of length 𝐷 , rate at least 𝑟0,

distance at least 𝛿0, and such that 𝐶0 ⊗𝐶0 is 𝜅0-agreement testable.

By Lemma 5.2 there exists an explicit construction of an infinite fam-

ily of groups 𝐺𝑛 = 𝑃𝑆𝐿2 (𝑞𝑛) together with generating sets 𝐴𝑛, 𝐵𝑛
such that for each 𝑛 ∈ N, |𝐴𝑛 | = |𝐵𝑛 | = 𝐷 , conditions (TNC) holds,

and both 𝐶𝑎𝑦 (𝐺𝑛, 𝐴𝑛) and 𝐶𝑎𝑦 (𝐺𝑛, 𝐵𝑛) are 𝜆 = 4𝐷−1/2
expanders.

Define our family of global codes to be 𝐶𝑛 = 𝐶 [𝐺𝑛, 𝐴𝑛, 𝐵𝑛,𝐶0],
𝑛 ∈ N, and by the above choices it has the following parameters:

• Block-length
1

4
𝐷2 |𝐺𝑛 |, where |𝐺𝑛 | = 1

2
(𝑞3𝑛 − 𝑞𝑛).

• Rate at least 𝑟 = 4𝑟0 − 3 > 0, by Lemma 4.2.

• Distance at least 𝛿 = 𝛿2

0
(𝛿0 − 4𝐷−1/2) > 0, by Lemma 4.4.

• It is 𝜅-locally testable with 𝐷2
queries, by Theorem 4.5, for

𝜅 = min

{
1

4 + 8𝐷
,

1

4𝐷

(
𝛿0𝜅0

8 + 𝜅0

− 4𝐷−1/2
)}

> 0.

□

Remark 5.3. In Theorem 1.1, the parameters 𝛿 , 𝐷 and 𝜅 depend on

the parameter 𝜖 = 1 − 𝑟 , as follows (ignoring absolute constants):

𝛿 = Ω(𝜖3), 𝐷 = 𝑂 (𝜖−10) and 𝜅 = Ω(𝜖15) .

5.1 Good Base Codes
In this section we will show that random LDPC codes satisfies w.h.p.

the requirements of Lemma 5.1.

Random LDPC codes, see Definition 2.6, were famously intro-

duced by Gallager in his PhD thesis [32]. A random (𝑐, 𝑑, 𝑛)-code
is given by selecting a random (𝑐, 𝑑)-regular bipartite graph (called

the factor graph of the code), which in turn is done by taking a

random matching between the 𝑛𝑐 “half-edges” on the left and the

𝑚𝑑 “half-edges” on the right, where we assume that 𝑛𝑐/𝑑 is an

integer.
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Spielman described in his thesis [63] the following one-sided

vertex expansion property for bipartite graphs,

Definition 5.4. A (𝑐, 𝑑)-regular bipartite graph ( [𝑛], [𝑚], 𝐸) is a
(𝛿,𝛾)-expander if every set of left vertices 𝐴 ⊂ [𝑛] whose size is at
most 𝛿𝑛, has at least 𝑐 |𝐴| (1 − 𝛾) neighbors.

Claim 5.5 (Claim 6.4 in [12]
1
). For any 𝑑 > 𝑐 > 2, any 𝛾 > 1

𝑐 ,

any 𝛿 < 𝑒
1− 𝑐+1

𝑐𝛾 𝑑−1 and any 𝑛 such that 𝑛𝑐/𝑑 ∈ N, then a random
(𝑐, 𝑑)-biregular graph ( [𝑛], [𝑚], 𝐸) is a (𝛿,𝛾)-expander with positive
probability.

The proof is a simple union bound argument, similar to Gallager’s

proof [32] that a random LDPC code has constant distance with

high probability.

Claim 5.6. A (𝑐, 𝑑, 𝑛)-LDPC code whose factor graph is (𝛿,𝛾)-
expander graph, with 𝛾 < 1

2
, has rate at least 1 − 𝑐

𝑑
and distance at

least 𝛿 .

Proof. The number of constraints of the code is 𝑚 = 𝑛𝑐/𝑑 ,
hence the dimension of the code is at least 𝑛 −𝑚 = 𝑛(1 − 𝑐

𝑑
), so

the rate is at least 1 − 𝑐
𝑑
. An LDPC code whose factor graph is a

(𝛿,𝛾)-expander with 𝛾 < 1

2
, has the unique neighbor expansion

property [63], i.e. that for each subset 𝐴 ⊂ [𝑛], |𝐴| ≤ 𝛿𝑛, there

exists 𝑢 ∈ [𝑚] with a unique neighbor in 𝐴, which implies that the

distance of the code is at least 𝛿 . □

In [29] and [19] it is shown that the tensor codes of random

LDPC codes are robustly testable.

Theorem 5.7 (Robust testability of expander codes). Let
𝐶 be a (𝑐, 𝑑, 𝑛)-code whose factor graph is a (𝑐, 𝑑)-regular (𝛿,𝛾)-
expander. Let 𝐶 ′ be any linear code with distance 𝛿 ′. Then 𝐶 ⊗ 𝐶 ′ is
𝜏-robustly testable for

• 𝜏 ≥ 𝛿𝛿′ · ( 1

6
−𝛾 )

2𝑑
when 𝛾 < 1/6 [29], and

• 𝜏 ≥ 𝛿𝛿′ ·
𝑑

log
0.5+𝛾 0.05

for all 𝛾 < 1/2 [19].

Finally, we can prove Lemma 5.1, which we restate for conve-

nience,

Lemma (Restatement of Lemma 5.1). For all 0 < 𝑟0 < 1, there
exist 𝛿0, 𝜅0 > 0 and 𝑑0 ∈ N, such that for any 𝐷 ∈ N that is divisible
by 𝑑0, there exists a binary linear error correcting code 𝐶0 of length
𝐷 , rate at least 𝑟0, distance at least 𝛿0, and such that the tensor code
𝐶0 ⊗ 𝐶0 is 𝜅0-agreement testable.

Proof. Set 𝑐0 = 13, 𝛾0 = 2𝑐−1

0
, 𝑑0 = ⌈ 𝑐0

1−𝑟0

⌉ and 𝛿0 = (404𝑑0)−1
.

Note that 𝛾0 < 1

6
and 𝛿 < 𝑒

1− 𝑐
0
+1

𝑐
0
𝛾

0 𝑑−1

0
. By Claim 5.5 for any 𝐷 ∈ N

divisible by 𝑑0, a random (𝑐0, 𝑑0)-regular bipartite graph with𝐷 left

vertices is a (𝛿0, 𝛾0)-expander with positive probability. For such

a bipartite graph, we take 𝐶0 to be the corresponding (𝑐0, 𝑑0, 𝐷)-
LDPC code. By Lemma 5.6, this code has rate at least 1 − 𝑐0

𝑑0

> 𝑟0,

distance at least 𝛿0, and by taking 𝐶 ′ = 𝐶0 in Theorem 5.7, we get

that 𝐶0 ⊗ 𝐶0 is robustly testable with 𝜏0 =
𝛿2

0
· ( 1

6
−𝛾0)

2𝑑0

. By Claim A.1

these codes are 𝜅0-agreement testable for 𝜅0 =
𝛿3

0
· ( 1

6
−𝛾0)

4𝑑0

. □

1
A (𝛿,𝛾 )-expander here is called a (𝑐 (1 − 𝛾 ), 𝛿)-left-expander in [12].

Remark 5.8. In Lemma 5.1, the parameters 𝛿0 and 𝜅0 depend on the

parameter 𝜖 = 1 − 𝑟0, as follows (ignoring absolute constants):

𝛿0 = Ω(𝜖) and 𝜅0 = Ω(𝜖4) .

6 GOOD LEFT-RIGHT CAYLEY COMPLEXES
In the previous section we showed how to construct good locally

testable codes on left-right Cayley complexes provided the latter

have sufficiently large spectral gap. To finish the proof of the main

result of the paper, we neeed to show that such complexes indeed

exist and to give an explicit construction. Namely, in this section

we prove Lemma 5.2.

More generally, we show that for every 𝜆 > 0, there exist 𝑘1, 𝑘2 ∈
N and an infinite family of finite groups 𝐺𝑖 , with two symmetric

subsets of generators𝐴𝑖 , 𝐵𝑖 , such that for each 𝑖 , |𝐴𝑖 | = 𝑘1 and |𝐵𝑖 | =
𝑘2, the two sets 𝐴𝑖 and 𝐵𝑖 satisfies (TNC), and the second largest

eigenvalues of the normalized adjacency matrices of Cay(𝐺𝑖 , 𝐴𝑖 )
and Cay(𝐺𝑖 , 𝐵𝑖 ), denoted 𝜆(Cay(𝐺𝑖 , 𝐴𝑖 )) and 𝜆(Cay(𝐺𝑖 , 𝐵𝑖 )), are
bounded from above by 𝜆. Moreover, we can take 𝜆 = Θ(𝑘−1/2

1
) =

Θ(𝑘−1/2
2
), making both Cayley graphs quasi-Ramanujan.

There are a number of ways in the literature to find Cayley

graphs with small 𝜆(Cay(𝐺, 𝑆)). There are even various methods to

give different sets of generators for the same group (see [52], [51]).

The difficulty is to ensure that condition (TNC) is satisfied. We will

show two (actually three) ways to do so. In all of our constructions,

the elements in the sets 𝐵𝑖 will be of order 2, while all the elements

in 𝐴𝑖 will be of order greater then 2. This ensures that (TNC) is

automatically satisfied.

6.1 The Morgenstern Generators
In [55], Morgenstern presented for every prime power 𝑞, infinitely

many groups𝐺𝑖 = 𝑃𝐺𝐿2 (𝑞𝑖 ) or𝐺𝑖 = 𝑃𝑆𝐿2 (𝑞𝑖 ) each with a symmet-

ric set 𝐵𝑖 of 𝑞 + 1 generators such that Cay(𝐺𝑖 , 𝐵𝑖 ) are Ramanujan,

i.e., 𝜆(Cay(𝐺𝑖 , 𝐵𝑖 )) ≤
2

√
𝑞

𝑞+1 .

The case of 𝑞 even, i.e., 𝑞 = 2
ℓ
, is special in two ways. First of all,

here 𝑃𝐺𝐿2 (𝑞𝑖 ) = 𝑃𝑆𝐿2 (𝑞𝑖 ), so this is always a simple group. But

more importantly, in this case all the elements of 𝐵𝑖 are of order 2

(see Remark 6.3 below). Assume 𝑞 is even from now on.

Morgenstern constructed an explicit arithmetic lattice Γ in the

group 𝑃𝑆𝐿2 (F𝑞 ((𝑡))) which is isomorphic to the free product ⟨𝑏0⟩ ∗
. . . ∗ ⟨𝑏𝑞⟩, where 𝐵 = {𝑏0, . . . , 𝑏𝑞} is a set of elements of order 2 (see

[55, Section 5]). The above mentioned Cayley graphs Cay(𝐺𝑖 , 𝐵𝑖 )
are identified as quotients of this Γ by normal congruence sub-

groups, where 𝐵𝑖 = 𝜙𝑖 (𝐵) is the image of 𝐵 under an epimorphism

𝜙𝑖 : Γ → 𝐺𝑖 . Note that by [55] these Cayley graphs are all Ra-

manujan.

Let us now show how to get another symmetric set of generators

𝐴𝑖 for 𝐺𝑖 = 𝑃𝑆𝐿2 (𝑞𝑖 ) with 𝜆(Cay(𝐺𝑖 , 𝐴𝑖 )) small, and such that 𝐴𝑖
and 𝐵𝑖 satisfy (TNC).

Let Λ be the index 2 subgroup of Γ - the kernel of the homomor-

phism 𝜙 : Γ → 𝐶2 (= the cyclic group of order 2) where 𝜙 sends

each 𝑏 𝑗 to the unique non-trivial element of 𝐶2. One can see easily

that Λ is exactly the subgroup of all elements of Γ of even length

w.r.t. 𝐵. It is generated by the set 𝐴 = {𝑏𝑡𝑏𝑠 | 𝑏𝑡 , 𝑏𝑠 ∈ 𝐵, 𝑡 ≠ 𝑠}
which is of size 𝑘1 = 𝑞2 + 𝑞. We claim
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Claim 6.1. (i) For 𝑖 > 1, the image𝐴𝑖 = 𝜙𝑖 (𝐴) of𝐴 in𝐺𝑖 generates
𝐺𝑖 = 𝑃𝑆𝐿2 (𝑞𝑖 ).
(ii) 𝜆(Cay(𝐺𝑖 , 𝐴𝑖 )) < 3𝑞−1

𝑞2+𝑞 <
3

√
𝑘1−1

𝑘1

.
(iii) For 𝑖 > 4, the images of the elements of 𝐴 in 𝐺𝑖 are distinct from
one another, and each element in 𝐴𝑖 has order > 2.

Proof. (i) Since Λ = ⟨𝐴⟩ is of index two in Γ then ⟨𝐴𝑖 ⟩ is of
index at most two in 𝐺𝑖 . But 𝐺𝑖 = 𝑃𝑆𝐿2 (𝑞𝑖 ) is simple, hence it has

no index 2 subgroup (a subgroup of index 2 must be normal), which

implies ⟨𝐴𝑖 ⟩ = 𝐺𝑖 .

(ii) Let 𝑇𝐵 and 𝑇𝐴 be the (non-normalized) adjacency matrices of

Cay(𝐺𝑖 , 𝐵𝑖 ) and Cay(𝐺𝑖 , 𝐴𝑖 ), respectively. Note that𝑇 2

𝐵
= 𝑇𝐴 + (𝑞 +

1)𝐼 . Hence if 𝜇 is an eigenvalue of𝑇𝐴 , then 𝜇 = 𝜆2− (𝑞 +1) for some

eigenvalue 𝜆 of 𝑇𝐵 . Since Cay(𝐺𝑖 , 𝐵𝑖 ) is Ramanujan, |𝜆 | = 𝑞 + 1 or

|𝜆 | ≤ 2

√
𝑞. Therefore 𝜇 = 𝑞2 + 𝑞 or 𝜇 ≤ (2√𝑞)2 − (𝑞 + 1) = 3𝑞 − 1.

(iii) It suffices to show that each reduced word which is a product of

length at most 4 in 𝐵 is not in the kernel of 𝜙𝑖 , which is equivalent

to the girth of Cay(𝐺𝑖 , 𝐵𝑖 ) being greater than 4. By [55, Theorem

5.13 (3)] the girth of Cay(𝐺𝑖 , 𝐵𝑖 ) is at least 2

3
log𝑞 |𝐺𝑖 | ≥ 𝑖 , which

completes the proof. □

Thus, given 𝜆 > 0 by taking𝑞 large enough so that
3

√
𝑞2+𝑞−1

𝑞2+𝑞 < 𝜆,

we get the desired 𝜆-expanding left-right Cayley complexes with

𝑘1 = 𝑞2 + 𝑞 and 𝑘2 = 𝑞 + 1.

We can do slightly better. Note that Λ above, being a normal

subgroup of a free product of finite groups, with trivial intersection

with each factor is a free group (see Section 34 in [46]). In fact, by

the Reidemeister-Schreier algorithm applied to the transversal set

{1, 𝑏0} of Λ in Γ (or by inspection) one can see that Λ is a free group

on the 𝑞 generators {𝑏0𝑏 𝑗 : 𝑗 = 1, . . . , 𝑞}. As (𝑏0𝑏 𝑗 )−1 = 𝑏 𝑗𝑏0 we

deduce that 𝐴′ = {𝑏0𝑏 𝑗 , 𝑏 𝑗𝑏0 : 𝑗 = 1, . . . , 𝑞} is a symmetric set of

generators of Λ.
We can now look at the image 𝐴′

𝑖
= 𝜙𝑖 (𝐴′) under the epimor-

phism 𝜙𝑖 : Γ → 𝐺𝑖 . Arguing similarly to the proof of Claim 6.1 (i),

𝐴′
𝑖
generates 𝐺𝑖 , and by the proof of (iii) above, the images are all

different. Finally:

Claim 6.2. 𝜆(Cay(𝐺𝑖 , 𝐴′𝑖 )) <
3

√
2𝑞−1

2𝑞 .

Proof. Let 𝑉𝑖 = {𝑓 : 𝐺𝑖 → C} and for any element 𝑠 ∈ 𝐺𝑖 ,

define the 𝑠-adjecancy 𝑇𝑠 : 𝑉𝑖 → 𝑉𝑖 , 𝑇𝑠 𝑓 (𝑔) = 𝑓 (𝑔𝑠), and for any

multiset 𝑆 of 𝐺𝑖 , define the 𝑆-adjecancy operator 𝑇𝑆 : 𝑉𝑖 → 𝑉𝑖 ,

𝑇𝑆 =
∑
𝑠∈𝑆 𝑇𝑠 . Note that for any two multisets 𝑆, 𝑆 ′ of 𝐺𝑖 , 𝑇𝑆∪𝑆′ =

𝑇𝑆 +𝑇𝑆′ −𝑇𝑆∩𝑆′ and𝑇𝑆𝑇𝑆′ = 𝑇𝑆𝑆′ , where 𝑆𝑆
′ = {𝑠𝑠 ′ : 𝑠 ∈ 𝑆, 𝑠 ′ ∈ 𝑆 ′}

counted with multiplicities. Therefore 𝑇𝐴′
𝑖
= 𝑇𝑏𝑇𝐵𝑖 + 𝑇𝐵𝑖𝑇𝑏 − 2𝐼 ,

where𝑏 = 𝜙𝑖 (𝑏0). Let 𝑓 ∈ 𝑉𝑖 be such that 𝑓 ⊥ 1𝐺𝑖
, i.e.

∑
𝑔∈𝐺𝑖

𝑓 (𝑔) =
0. Note that for any 𝑠 ∈ 𝐺𝑖 , then 𝑇𝑠 𝑓 ⊥ 1𝐺𝑖

and ∥𝑇𝑠 𝑓 ∥ = ∥ 𝑓 ∥. By
[55, Theorem 5.11], we have ∥𝑇𝐵𝑖 𝑓 ∥ ≤ 2

√
𝑞∥ 𝑓 ∥ for any 𝑓 ⊥ 1𝐺𝑖

.

Then

∥𝑇𝐴′
𝑖
𝑓 ∥ ≤ ∥𝑇𝑏𝑇𝐵𝑖 𝑓 ∥+∥𝑇𝐵𝑖𝑇𝑏 𝑓 ∥+2∥ 𝑓 ∥ ≤ ∥𝑇𝐵𝑖 𝑓 ∥+∥𝑇𝐵𝑖 (𝑇𝑏 𝑓 )∥+2∥ 𝑓 ∥

≤
(
2

√
𝑞 − 1

)
∥ 𝑓 ∥ +

(
2

√
𝑞 − 1

)
∥ 𝑓 ∥ + 2∥ 𝑓 ∥

= 4

√
𝑞∥ 𝑓 ∥ ≤ 3

√
2𝑞 − 1∥ 𝑓 ∥

which completes the proof. □

So this time we have a family of 𝜆-expanders left-right Cayley

complexes with 𝑘1 = 2𝑞 and 𝑘2 = 𝑞 + 1, for any 𝜆 ≥ 3

√
2𝑞−1

2𝑞 .

Remark 6.3. Everything said above is explicit. In fact the generator

set 𝐵𝑖 of 𝑃𝑆𝐿2 (𝑞𝑖 ) are given explicitly in [55, equation (21)]. Assume

for simplicity that 𝑖 is even. Let i ∈ F𝑞𝑖 be such that i ∉ F𝑞 and

𝜖 = i2 + i ∈ F𝑞 . Let 𝑥 ∈ F𝑞𝑖 be such that 1, 𝑥, . . . , 𝑥𝑒𝑖−1
form a basis

for F𝑞𝑖 over F𝑞 . Then the 𝑞 + 1 elements of 𝐵𝑖 are

𝜙𝑖 (𝑏 𝑗 ) =
(

1 𝛾 𝑗 + 𝛿 𝑗 i
𝑥 (𝛾 𝑗 + 𝛿 𝑗 + 𝛿 𝑗 i) 1

)
, 𝑗 = 0, . . . , 𝑞, (20)

where (𝛾 𝑗 , 𝛿 𝑗 ) ∈ F2

𝑞 are the 𝑞+1 solutions in F𝑞 for 𝛾
2+𝛾𝛿 +𝛿2𝜖 = 1.

One indeed sees that each of the elements of 𝐵𝑖 is of order 2.

We will pass now to a different construction, which will give us

Cayley graphs of 𝐺𝑖 w.r.t. 𝐴𝑖 and 𝐵𝑖 of the same size: |𝐴𝑖 | = |𝐵𝑖 | =
𝑞 + 1, and both are Ramanujan.

6.2 The LSV Generators
In [51], Lubotzky, Samuels and Vishne constructed Ramanujan com-

plexes, based on an arithmetic lattice Γ, discovered by Cartwright

and Steger [21], which acts simply transitively on the Bruhat-Tits

building of 𝑃𝐺𝐿𝑑 (F𝑞 ((𝑡))). The special case 𝑑 = 2 gave some new

Ramanujan graphs. These Ramanujan graphs were highlighted in

[43], as edge-transitive Ramanujan graphs which have been used

there to construct symmetric LDPC codes.

The arithmetic group Γ, acting simply transitively on the Bruhat-

Tits tree of 𝑃𝐺𝐿2 (F𝑞 ((𝑡))) (𝑞 any odd prime power) is obtained

there as a the group generated by the 𝑞 + 1 conjugates of a specific

element 𝑏, conjugated by the non-split torus 𝑇 of order 𝑞 + 1 in

𝑃𝐺𝐿2 (F𝑞). This is a symmetric set of generators 𝐴 for Γ which

generates a free group on
𝑞+1

2
generators. We will present below a

different choice for 𝑏, this time 𝑏 ′ - an element of order 2, whose

conjugation under 𝑇 forms a symmetric set 𝐵 of size 𝑞 + 1 and

generate a group Γ′ which also acts simply transitively on the

Bruhat-Tits tree. Moreover, Γ and Γ′ are both finite index subgroups
of an arithmetic group 𝐺 (𝑅) - to be defined below.

In [51] (see also [43]) it was shown that𝐺 (𝑅) has infinitely many

finite congruence quotients 𝐺𝑖 , under the maps 𝜙𝑖 : 𝐺 (𝑅) → 𝐺𝑖 ,

where𝐺𝑖 = 𝑃𝐺𝐿2 (F𝑞𝑖 ) or 𝑃𝑆𝐿2 (F𝑞𝑖 ), for which Cay(𝐺𝑖 , 𝜙𝑖 (𝐴)) are
Ramanujan (𝑞 + 1)-regular graphs. We will observe below that the

same holds for Cay(𝐺𝑖 , 𝜙𝑖 (𝐵)). For 𝑖 large enough (see Claim 6.5)

the elements of 𝜙𝑖 (𝐴) are of order > 2 while 𝜙𝑖 (𝐵) contains only
elements of order 2. Hence we will get two-sided Cayley square

complexes with 𝑘1 = 𝑘2 = 𝑞 + 1 and 𝜆 ≤ 2

√
𝑞

𝑞+1 . By choosing 𝑞 large

enough, they will be 𝜆-expanders for arbitrarly small 𝜆 > 0.

Now, in more details: Let 0 ≠ 𝜖 ∈ F𝑞 be a non-square element,

let 𝑅 = F𝑞 [𝑦, 1

𝑦 ,
1

1+𝑦 ] be the subring of F𝑞 (𝑦), generated by 𝑦, 1

𝑦

and
1

1+𝑦 , and let 𝐴(𝑅) be the quaternion 𝑅-algebra,

𝐴(𝑅) = 𝑅 + 𝑅𝛼 + 𝑅𝑧 + 𝑅𝛼𝑧 : 𝛼2 = 𝜖, 𝑧2 = 1 + 𝑦, 𝑧𝛼 = −𝛼𝑧.
(21)

Remark 6.4. We note that our choice of basis for the algebra 𝐴(𝑅),
{1, 𝛼, 𝑧, 𝛼𝑧}, is based on [43], while [51] used a different basis for

𝐴(𝑅), {𝜉, 𝜉𝑞, 𝜉𝑧, 𝜉𝑞𝑧}, where {𝜉, 𝜉𝑞} forms an F𝑞-basis for F𝑞2 =

F𝑞 [𝛼]. The change of bases does not affect any of the following

constructions.

For any ring 𝐷 , denote by 𝐷∗ its group of units. Note that an

element of 𝑟 (𝑦) ∈ 𝑅 belongs to 𝑅∗ if and only if it is of the form
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𝑟 (𝑦) = 𝑐𝑦𝑛 (1 + 𝑦)𝑚 , 𝑐 ∈ F∗𝑞 , 𝑛,𝑚 ∈ Z, and that an element 𝑎 =

𝑎1 + 𝑎2𝛼 + 𝑎3𝑧 + 𝑎4𝛼𝑧 ∈ 𝐴(𝑅) belongs to 𝐴(𝑅)∗ if and only if its

norm 𝑁 (𝑎) := 𝑎2

1
− 𝜖𝑎2

2
− (1 + 𝑦)𝑎2

3
− 𝜖 (1 + 𝑦)𝑎2

4
∈ 𝑅 belongs to 𝑅∗.

Note also that 𝑅 is the center of 𝐴(𝑅) and 𝑅∗ is the center of 𝐴(𝑅)∗.
Then the principal arithmetic group 𝐺 (𝑅) is defined to be

𝐺 (𝑅) = 𝐴(𝑅)∗/𝑅∗ =
{
𝑎 ∈ 𝐴(𝑅) : 𝑁 (𝑎) ∈ 𝑅∗

}
/𝑅∗ .

The Cartwright–Steger arithmetic lattice Γ, and the second arith-

metic lattice Γ′, are defined to be the subgroups of 𝐺 (𝑅), gen-
erated by the symmetric sets of size 𝑞 + 1, 𝐴 and 𝐵, which are

the sets of 𝑇 conjugates of the elemenets, 𝑏 and 𝑏 ′, respectively,
where 𝑇 = F𝑞 [𝛼]∗/F∗𝑞 ≤ 𝐺 (𝑅) is a non-split torus of order 𝑞 + 1,

𝑏 =

(
1 − 1

1+𝑦 𝑧
)
𝑅∗ ∈ 𝐺 (𝑅) and 𝑏 ′ = 𝛼𝑏 =

(
𝛼 − 1

1+𝑦𝛼𝑧
)
𝑅∗ ∈ 𝐺 (𝑅),

namely,

Γ = ⟨𝐴⟩ ≤ 𝐺 (𝑅), 𝐴 =
{
𝑡𝑏𝑡−1

: 𝑡 ∈ 𝑇
}
,

Γ′ = ⟨𝐵⟩ ≤ 𝐺 (𝑅), 𝐵 =
{
𝑡𝑏 ′𝑡−1

: 𝑡 ∈ 𝑇
}
,

𝑇 = F𝑞 [𝛼]∗/F∗𝑞, 𝑏 =

(
1 − 1

1 + 𝑦 𝑧
)
𝑅∗, 𝑏 ′ = 𝛼𝑏.

Note that 𝑏 and 𝑏 ′ belongs to 𝐺 (𝑅), since 𝑁
(
1 − 1

1+𝑦 𝑧
)
= 1 − (1 +

𝑦) 1

(1+𝑦)2 =
𝑦

1+𝑦 ∈ 𝑅
∗
and 𝑁

(
𝛼 − 1

1+𝑦𝛼𝑧
)
= 𝑁 (𝛼) ·𝑁

(
1 − 1

1+𝑦 𝑧
)
=

−𝜖 · 𝑦
1+𝑦 ∈ 𝑅

∗
.

Claim 6.5. (i) Every element of 𝐴 is of infinite order, while every
element of 𝐵 is of order 2.
(ii) For 𝑖 > 2, every element of𝐴𝑖 = 𝜙𝑖 (𝐴) is of order > 2, while every
element of 𝐵𝑖 = 𝜙𝑖 (𝐵) is of order 2.

Proof. (i) The claim about the elements of𝐴 follows from Corol-

lary 5.4 of [51]. For the claim about the elements of 𝐵, since they

are all conjugate of one another, it suffice to show 𝑏 ′2 = 1, or

equivalently,

(
𝛼 − 1

1+𝑦𝛼𝑧
)

2

∈ 𝑅∗. This follows from the following

computations,(
𝛼 − 1

1 + 𝑦 𝛼𝑧
)

2

= 𝛼2 − 1

1 + 𝑦 𝛼𝛼𝑧 −
1

1 + 𝑦 𝛼𝑧𝛼 +
1

(1 + 𝑦)2
𝛼𝑧𝛼𝑧 = ∗,

and by Equation 21, as 𝛼𝑧 = −𝑧𝛼 , 𝛼2 = 𝜖 and 𝑧2 = 1 + 𝑦, we get

∗ = 𝛼2 − 1

(1 + 𝑦)2
𝛼2𝑧2 = 𝜖 − 𝜖

1 + 𝑦 = 𝜖
𝑦

1 + 𝑦 ∈ 𝑅
∗ .

(ii) This follows from an injectivity radius argument for congruence

subgroups, see for instance [48]. □

LetB be the Bruhat-Tits tree of 𝑃𝐺𝐿2 (F𝑞 ((𝑡))), which is a (𝑞+1)-
regular infinite tree. By [51, Section 3], Γ, Γ′ and𝐺 (𝑅) are subgroups
of 𝑃𝐺𝐿2 (F𝑞 ((𝑡))), hence acts on B. In the notation of [51], let

𝑣0 = [𝐿0] be the fundamental vertex in B, and let Ω be the set of

its neighbors.

Claim 6.6. (i) For each set 𝑋 = 𝐴 or 𝑋 = 𝐵, the map 𝑔↔ 𝑔.𝑣0

is a bijection between 𝑋 and Ω.
(ii) The subgroups, Γ and Γ′, acts simply transitively on the Bruhat-

Tits tree.
(iii) Both subgroups, Γ and Γ′, are normal in 𝐺 (𝑅) and of index

2(𝑞 + 1).
(iv) If 𝜙 : 𝐺 (𝑅) → 𝑃𝑆𝐿2 (𝑞𝑒 ) is an epimorphism, then both subsets,

𝜙 (𝐴) and 𝜙 (𝐵), are symmetric set of generators for 𝑃𝑆𝐿2 (𝑞𝑒 ).

(v) If 𝜙 : 𝐺 (𝑅) → 𝑃𝑆𝐿2 (𝑞𝑒 ) is an epimorphism whose kernel is a
congruence subgroup𝐺 (𝑅, 𝜙) of𝐺 (𝑅), then both Cayley graphs,
Cay(𝑃𝑆𝐿2 (𝑞𝑒 ), 𝜙 (𝐴)) and Cay(𝑃𝑆𝐿2 (𝑞𝑒 ), 𝜙 (𝐵)), are Ramanu-
jan (𝑞 + 1)-regular graphs.

Proof. (i) The claim for 𝐴 is [51, Proposition 4.3]. The claim

for 𝐵 follows from the claim for𝐴 and the identity 𝑡𝑏 ′𝑡−1 .𝑣0 =

𝑡𝛼𝑏𝑡−1 .𝑣0 = (𝑡𝛼)𝑏 (𝑡𝛼)−1 (𝑡𝛼𝑡−1).𝑣0. Now, 𝛼 ∈ 𝑇 and 𝑇 fixes

𝑣0, so {𝑡𝑏 ′𝑡−1 .𝑣0 |𝑡 ∈ 𝑇 } = {𝑡𝑏𝑡−1 .𝑣0 |𝑡 ∈ 𝑇 }.
(ii) The transitivity claim for Γ is [51, Proposition 4.5], which

relies solely on the validity of claim (i) for the generating set

𝐴 of Γ, hence the same proof works also for Γ′. Moreover, the

same proof can actually show that for any 𝑛 ∈ N, for any
vertex 𝑣 of distance 𝑛 from 𝑣0, there exists a reduced word

𝑔 = 𝑠1 · · · 𝑠𝑛 ∈ Γ (resp. Γ′), 𝑠1, . . . , 𝑠𝑛 ∈ 𝐴 (resp. 𝐵), such that

𝑔.𝑣0 = 𝑣 . This proves that the action is also simply transitive

since the number of vertices of distance 𝑛 is equal the number

of reduced words of length 𝑛, for any 𝑛 ∈ N.
(iii) The claim for Γ follows from [51, Propositions 4.9 and 3.5], and

the same proof alsoworks for Γ′. The fact that the index is 2(𝑞+
1) follows also from the fact that Γ′ acts simply transitively

on the Bruhat-Tits tree by (ii). Hence the index of Γ′ in 𝐺 (𝑅)
is equal to the order of the stabilizer of 𝑣0 in 𝐺 (𝑅), which by

[51, Proposition 3.5], is of size 2(𝑞 + 1).
(iv) By (iii) both images, 𝜙 (Γ) and 𝜙 (Γ′), are normal subgroups of

index ≤ 2(𝑞 + 1) in 𝑃𝑆𝐿2 (𝑞𝑒 ), and since 𝑃𝑆𝐿2 (𝑞𝑒 ) is a simple

group of size ≥ 1

2
(𝑞 + 1)𝑞(𝑞 − 1) > 2(𝑞 + 1), we get that

𝜙 (Γ) = 𝑃𝑆𝐿2 (𝑞𝑒 ) = 𝜙 (Γ′).
(v) The claim for Cay(𝑃𝑆𝐿2 (𝑞𝑒 ), 𝜙 (𝐴)) is [51, Theorem 7.1], and

the same proof holds also for Cay(𝑃𝑆𝐿2 (𝑞𝑒 ), 𝜙 (𝐵)). Another
way to see this is to observe that both graphs are isomorphic

to 𝐺 (𝑅, 𝜙)\B and in particular they are isomorphic, so if one

is Ramanujan so is the other.

□

6.3 Proof of Lemma 5.2 and Degree Reduction
First we use the LSV generators constructed in the previous sub-

section to prove the following claim.

Claim 6.7. For any odd prime power 𝑞 there exist an explicit con-
struction of an infinite family of finite groups 𝐺𝑖 = 𝑃𝑆𝐿2 (𝑞𝑖 ), with
two symmetric generating subsets 𝐴𝑖 , 𝐵𝑖 of 𝐺𝑖 , such that for each
𝑖 , |𝐴𝑖 | = |𝐵𝑖 | = 𝑞 + 1, condition (TNC) holds for 𝐴𝑖 and 𝐵𝑖 , and
the Cayley graphs Cay(𝐺𝑖 , 𝐴𝑖 ) and Cay(𝐺𝑖 , 𝐵𝑖 ) are Ramanujan, in
particular

𝜆(Cay(𝐺𝑖 , 𝐴𝑖 )),Cay(𝐺𝑖 , 𝐵𝑖 ) ≤
2

√
𝑞

𝑞 + 1

≤ 2(𝑞 + 1)−1/2 . (22)

Proof. By Claim 6.6 we get that for any 𝑖 , there exists two

symmetric generating subsets𝐴𝑖 and 𝐵𝑖 of𝐺𝑖 = 𝑃𝑆𝐿2 (𝑞𝑖 ), both sets
are of size 𝑞+1, and the Cayley graphs Cay(𝐺𝑖 , 𝐴𝑖 ) and Cay(𝐺𝑖 , 𝐵𝑖 )
are both Ramanujan. By Claim 6.5, for any 𝑖 > 2, the two sets 𝐴𝑖
and 𝐵𝑖 satisfy condition (TNC). □

Next we prove the following degree reduction trick, which allows

us to start with a 𝜆-expander Cayley graph, and to remove a few

elements from the generating set with only negligible effect on 𝜆.
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Claim 6.8. Let 𝐺 be a finite group, 𝑆 ′ ⊂ 𝑆 two symmetric subsets
of 𝐺 , and 𝜆(Cay(𝐺, 𝑆)) and 𝜆(Cay(𝐺, 𝑆 ′)) be the normalized second
largest eigenvalues of the corresponding Cayley graphs. Then

𝜆(Cay(𝐺, 𝑆 ′)) ≤ 𝜆(Cay(𝐺, 𝑆)) + |𝑆 \ 𝑆
′ |

|𝑆 ′ | .

In particular, if Cay(𝐺, 𝑆) is Ramanujan and |𝑆 \ 𝑆 ′ | ≤ |𝑆 |1/2, then

𝜆(Cay(𝐺, 𝑆 ′)) ≤ 4|𝑆 ′ |−1/2 .

Proof. Denote by 𝑀 = 𝑀𝑆 , 𝑀
′ = 𝑀𝑆′ and 𝑀 ′′ = 𝑀𝑆\𝑆′ = 𝑀 −

𝑀 ′, the adjacency matrices of Cay(𝐺, 𝑆), Cay(𝐺, 𝑆 ′) and Cay(𝐺, 𝑆 \
𝑆 ′), respectively. Since Cay(𝐺, 𝑆) is |𝑆 |-regular (resp. Cay(𝐺, 𝑆 ′)
is |𝑆 ′ |-regular, resp. Cay(𝐺, 𝑆 \ 𝑆 ′) is |𝑆 \ 𝑆 ′ |-regular), the largest
eigenvalue of 𝑀 is |𝑆 | (resp. 𝑀 ′ is |𝑆 ′ |, resp. 𝑀 ′′ is |𝑆 \ 𝑆 ′ |), with
corresponding eigenvector the constant function 1𝐺 . Denote by

𝜆 = 𝜆 (Cay(𝐺, 𝑆)) and 𝜆′ = 𝜆 (Cay(𝐺, 𝑆 ′)) the normalized sec-

ond largest eigenvalue of𝑀 and𝑀 ′, respectively. By the Courant-

Fischer Formula we get

𝜆 · |𝑆 | = max

0≠𝑣⊥1𝐺

𝑣𝑡𝑀𝑣

𝑣𝑡𝑣
, 𝜆′ · |𝑆 ′ | = max

0≠𝑣⊥1𝐺

𝑣𝑡𝑀 ′𝑣
𝑣𝑡𝑣

and

|𝑆 \ 𝑆 ′ | = max

0≠𝑣

𝑣𝑡𝑀 ′′𝑣
𝑣𝑡𝑣

.

Therefore

𝜆′ · |𝑆 ′ | = max

0≠𝑣⊥1𝐺

𝑣𝑡𝑀 ′𝑣
𝑣𝑡𝑣

≤ max

0≠𝑣⊥1𝐺

𝑣𝑡𝑀𝑣

𝑣𝑡𝑣
+max

0≠𝑣

𝑣𝑡𝑀 ′′𝑣
𝑣𝑡𝑣

≤ 𝜆 · |𝑆 | + |𝑆 \ 𝑆 ′ |,

and after dividing by |𝑆 ′ | we get the first inequality

𝜆
(
Cay(𝐺, 𝑆 ′)

)
≤ 𝜆 (Cay(𝐺, 𝑆)) + |𝑆 \ 𝑆

′ |
|𝑆 ′ | .

Now assume Cay(𝐺, 𝑆) is Ramanujan and |𝑆 \ 𝑆 ′ | ≤ |𝑆 |1/2. Then
𝜆 ≤ 2|𝑆 |−1/2 ≤ 2|𝑆 ′ |−1/2

and
|𝑆\𝑆′ |
|𝑆′ | ≤ 2|𝑆 ′ |−1/2

. Combined with

the previous equation we get

𝜆′ ≤ 𝜆 + |𝑆 \ 𝑆
′ |

|𝑆 ′ | ≤ 4|𝑆 ′ |−1/2 .

□

Finally we combine the above two Claims to prove Lemma 5.2.

Lemma (Restatement of Lemma 5.2). Let 𝑑0 ∈ N. Let 𝑞 be any
odd prime power such that 𝑞 ≥ 𝑑2

0
and define 𝐷 = 𝑑0 · ⌊𝑞+1𝑑0

⌋ ∈ N.
Then there exist an explicit construction of an infinite family of fi-
nite groups 𝐺𝑖 = 𝑃𝑆𝐿2 (𝑞𝑖 ), with two symmetric generating sub-
sets 𝐴𝑖 , 𝐵𝑖 ⊂ 𝐺𝑖 , such that for each 𝑖 , both 𝐴𝑖 and 𝐵𝑖 are of size 𝐷
hence divisible by 𝑑0, 𝐴𝑖 and 𝐵𝑖 satisfy condition (TNC), and the
Cayley graphs Cay(𝐺𝑖 , 𝐴𝑖 ) and Cay(𝐺𝑖 , 𝐵𝑖 ) are 𝜆-expanders where
𝜆 ≤ 4𝐷−1/2.

Proof of Lemma 5.2. By Claim 6.7, for each 𝑖 , there exist �̃�𝑖 , �̃�𝑖
two symmetric generating subsets of 𝐺𝑖 = 𝑃𝑆𝐿2 (𝑞𝑖 ), such that

�̃�𝑖 , �̃�𝑖 are both of size 𝑞 + 1, they satisfy (TNC) and such that the

corresponding Cayley graphs are Ramanujan. Let 𝐴𝑖 ⊂ �̃�𝑖 and

𝐵𝑖 ⊂ �̃�𝑖 be any two symmetric subsets of size 𝐷 . Since �̃�𝑖 and �̃�𝑖
satisfy (TNC), any subsets of them must also satisfy (TNC). Note

that𝐷 is the largest integer divisible by 𝑑0 which is smaller or equal

to 𝑞 + 1, hence 𝑞 + 1−√𝑞 + 1 ≤ 𝑞 + 1−𝑑0 ≤ 𝐷 ≤ 𝑞 + 1. By Claim 6.8,

we get that for𝐺 = 𝐺𝑖 , 𝑆 = �̃�𝑖 or �̃�𝑖 , and 𝑆
′ = 𝐴𝑖 or 𝐵𝑖 , respectively,

we get that 𝜆(Cay(𝐺, 𝑆 ′)) ≤ 4𝐷−1/2
, which completes the proof of

the Lemma. □
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A APPENDIX - ROBUST TESTABILITY AND
AGREEMENT TESTABILITY

In this section we show the equivalence between the two notions,

proving Lemma 2.9

Claim A.1 (Robust testability implies agreement testabil-

ity). Assume 𝛿𝑖 = dist(𝐶𝑖 ) for 𝑖 = 1, 2. If 𝐶1 ⊗ 𝐶2 is 𝜏-robustly
testable then 𝐶1 ⊗ 𝐶2 is 𝜅-agreement testable, for 𝜅 =

2𝜏𝛿1𝛿2

𝛿2+𝛿1 (1+2𝜏) .

Proof. Suppose𝑤1 ∈ 𝐶1 ⊗ F𝑛2

2
, and𝑤2 ∈ F𝑛1

2
⊗ 𝐶2. Let 𝑓 = 𝑤1,

so 𝛿col (𝑓 ) = 0, and observe that since𝑤2 (𝑖, ·) ∈ 𝐶2 for each 𝑗 ,

𝛿row (𝑓 ) = E𝑖∈[𝑛1 ] dist(𝑓 (𝑖, ·),𝐶2)

≤ E𝑖∈[𝑛1 ] dist(𝑓 (𝑖, ·),𝑤2 (𝑖, ·)) = dist(𝑤1,𝑤2) .
By the robust testability of𝐶1 ⊗𝐶2 there is some𝑤 ∈ 𝐶1 ⊗𝐶2 such

that

dist(𝑤,𝑤1) = dist(𝑤, 𝑓 ) ≤ 1

𝜏
· 𝛿

row (𝑓 ) + 𝛿col (𝑓 )
2

≤ 1

2𝜏
· (dist(𝑤1,𝑤2) + 0) .

By the triangle inequality

dist(𝑤,𝑤2) ≤ dist(𝑤,𝑤1) + dist(𝑤1,𝑤2) ≤ (1 +
1

2𝜏
) dist(𝑤1,𝑤2).

Next, observe that P𝑗 [𝑤 (·, 𝑗) ≠ 𝑤1 (·, 𝑗)] · 𝛿1 ≤ dist(𝑤,𝑤1), and
similarly P𝑖 [𝑤 (𝑖, ·) ≠ 𝑤2 (𝑖, ·)] · 𝛿2 ≤ dist(𝑤,𝑤2). Altogether,
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P𝑗 [𝑤 (·, 𝑗) ≠ 𝑤1 (·, 𝑗)] + P𝑖 [𝑤 (𝑖, ·) ≠ 𝑤2 (𝑖, ·)]

≤ dist(𝑤,𝑤1)
𝛿1

+dist(𝑤,𝑤2)
𝛿2

≤ ( 1

2𝜏𝛿1

+1 + 1/(2𝜏)
𝛿2

)·dist(𝑤1,𝑤2)

proving the claim with

𝜅−1 =
1

2𝜏𝛿1

+ 1 + 1/(2𝜏)
𝛿2

or 𝜅 =
2𝜏𝛿1𝛿2

𝛿2 + 𝛿1 (1 + 2𝜏) .

□

Note that in case 𝛿1 = 𝛿2 = 𝛿 the statement simplifies slightly

to 𝜅 = 𝜏𝛿
𝜏+1 . The other direction, that we do not need here, is even

simpler,

Claim A.2 (Agreement testability implies robust testabil-

ity). If 𝐶1 ⊗ 𝐶2 is 𝜅-agreement testable, then 𝐶1 ⊗ 𝐶2 is 𝜏-robustly
testable for 𝜏 = 𝜅

2(𝜅+1) .

Proof. Assume𝐶1 ⊗𝐶2 is 𝜅-agreement testable. Let𝑤 ∈ F𝑛1×𝑛2

2

satisfy 𝛿 (𝑤) = 𝛿𝑐𝑜𝑙 (𝑤)+𝛿𝑟𝑜𝑤 (𝑤)
2

= 𝛿 . Let𝑤1 ∈ 𝐶1 ⊗F𝑛2

2
be such that

𝛿𝑐𝑜𝑙 (𝑤) = dist(𝑤,𝑤1). Let 𝑤2 ∈ F𝑛1

2
⊗ 𝐶2 be such that 𝛿𝑟𝑜𝑤 (𝑤) =

dist(𝑤,𝑤2). By the triangle inequality,

dist(𝑤1,𝑤2) ≤ dist(𝑤1,𝑤) + dist(𝑤,𝑤2)

= 𝛿𝑐𝑜𝑙 (𝑤) + 𝛿𝑟𝑜𝑤 (𝑤) = 2𝛿 (𝑤).
By the 𝜅-agreement testability there is some 𝑤 ′ ∈ 𝐶1 ⊗ 𝐶2 such

that

𝜅 · (P𝑖 [𝑤1 (𝑖, ·) ≠ 𝑤 ′(𝑖, ·)] + P𝑗 [𝑤2 (·, 𝑗) ≠ 𝑤 ′(·, 𝑗)])
≤ P𝑖, 𝑗 [𝑤1 (𝑖, 𝑗) ≠ 𝑤2 (𝑖, 𝑗)]) = dist(𝑤1,𝑤2) ≤ 2𝛿 (𝑤) .

But clearly

dist(𝑤1,𝑤
′) + dist(𝑤 ′,𝑤2) ≤ P𝑖 [𝑤1 (𝑖, ·)

≠ 𝑤 ′(𝑖, ·)] + P𝑗 [𝑤2 (·, 𝑗) ≠ 𝑤 ′(·, 𝑗)]
so again by the triangle inequality,

dist(𝑤,𝑤 ′)

≤ 1

2

(dist(𝑤,𝑤1) + dist(𝑤1,𝑤
′) + dist(𝑤,𝑤2) + dist(𝑤2,𝑤

′))

=
1

2

(dist(𝑤,𝑤1) + dist(𝑤,𝑤2) + dist(𝑤1,𝑤
′) + dist(𝑤2,𝑤

′))

≤ 𝛿 (𝑤) + 𝜅−1 · 𝛿 (𝑤) = 𝜅 + 1

𝜅
· 𝛿 (𝑤).

□
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